Introduction
Slow neural oscillations are known to depend on regenerative inward currents. The voltage range in which these currents dominate the neuron's activity is typically limited to the negative-slope conductance range of their IV curve. At low voltages, these currents are not active and at high voltages, outward currents and spike-activity dominate. We find that the contribution of such currents to neural oscillations can be approximated by a linear current with negative slope conductance (I NL ). Here we explore the minimal set of requirements to produce neural oscillations in the presence of I NL with the goal of elucidating how other current types shape the properties of oscillations.