Skip to main content

How conductance distributions are shaped by activity-dependent regulation rules

Neurons co-express a multitude of different ion channels that determine the electrophysiological behaviour of the cell. Recent experimental observations have revealed that the expression of different ion channels varies dramatically within neurons of a defined type, even when these neurons exhibit stereotyped electrical properties [15]. This variability has a structure visible in the correlations between different ion channel expression levels. Nonetheless,, the underlying mechanism that determines these correlations is unknown, nor is understood how these correlations can coexist with activity-dependent regulation mechanisms that are also known to exist in neurons [6]. We show that these observations are logical consequences of relatively simple control mechanisms that couple the expression levels of individual conductances to a cell-intrinsic readout of activity [7]. Crucially, these correlations are not visible when conductance space is searched to find combinations of conductances that give target behaviour. Therefore, activity-dependent regulation mechanisms constrain the solution space of potential combinations of membrane conductances to a characteristic subset. Furthermore, we show how the shape of the conductance distribution of a population of neurons is determined by the relative rates of expression of different conductances. Finally, degeneracy in the function of multiple ion channels means that regulation mechanisms can have widely-variable parameters yet remain stable; this is exemplified by tolerance to 'anti-homeostatic' regulation of a subset of conductances.


  1. Liss B, Roeper J: Correlating function and gene expression of individual basal ganglia neurons. Trends Neurosci. 2004, 27 (8): 475-481. 10.1016/j.tins.2004.06.007.

    Article  CAS  PubMed  Google Scholar 

  2. Schulz DJ, Goaillard JM, Marder E: Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci. 2006, 9 (3): 356-362. 10.1038/nn1639.

    Article  CAS  PubMed  Google Scholar 

  3. Schulz DJ, Goaillard JM, Marder EE: Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. P Natl Acad Sci USA. 2007, 104 (32): 13187-13191. 10.1073/pnas.0705827104.

    Article  Google Scholar 

  4. Tobin AE, Cruz-Bermudez ND, Marder E, Schulz DJ: Correlations in Ion Channel mRNA in Rhythmically Active Neurons. PloS one. 2009, 4 (8):

  5. Toledo-Rodriguez M, Blumenfeld B, Wu CZ, Luo JY, Attali B, Goodman P, Markram H: Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb Cortex. 2004, 14 (12): 1310-1327. 10.1093/cercor/bhh092.

    Article  PubMed  Google Scholar 

  6. Marder E, Goaillard JM: Variability, compensation and homeostasis in neuron and network function. Nature reviews. 2006, 7 (7): 563-574. 10.1038/nrn1949.

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Golowasch J, Marder E, Abbott LF: A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci. 1998, 18 (7): 2309-2320.

    CAS  PubMed  Google Scholar 

Download references


Supported by MH46742 and the Swartz Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Timothy O'Leary.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

O'Leary, T., Williams, A.H., Caplan, J.S. et al. How conductance distributions are shaped by activity-dependent regulation rules. BMC Neurosci 14 (Suppl 1), P258 (2013).

Download citation

  • Published:

  • DOI: