Skip to main content

A model for grid cells where spatially correlated place cells compete for the grid map nodes

Grid cells in the medial entorhinal cortex (mEC) encode space in a particular way: their firing rate intensity forms an equilateral triangular lattice as the animal moves in the environment [1]. Models addressing the generation of grid fields fall into two major classes, both with important limitations [2]. Most models based on interference of oscillations are not robust to noise and suffer from the prerequisite of two independent and stable network oscillations with similar frequency. Models based on recurrent networks, where the grid pattern emerges as a stable state of the network, suffer from the topographic assumption and the need for dense recurrent connections between mEC cells, which are both not supported by experimental data.

Here we present a novel firing rate model for the generation of grid fields with two very important features: i) grid fields are built on the spatial information provided by place cells, and ii) plasticity on the synapses between place cells and grid cells depend on the place cell's activity, and therefore depend on space. First, grid cells are driven by the synaptic input provided by the population of place cells. We therefore assume that place cells are the main source of spatial information reaching grid cells, which is in agreement with their development order [3]. Secondly, synapses between place cells and grid cells are subject to a learning process which depends both on pre-synaptic activity, therefore depending on spatial location, and on post-synaptic activity. Plasticity is triggered when the grid cell's activity is above a threshold value. Synaptic efficacies are discrete (w- <w0<w+<w++) and their change depends on pre-synaptic place cell activity. Four firing rate domains are considered and the synaptic change for each domain, from low to high, is: static, w0; potentiated w+; depressed, w-; potentiated, w++. When a synapse w+ is potentiated again its efficacy is raised to w++.


With the direct input of place cells to grid cells and with the plasticity rule previously described, spatially correlated place cells compete to form the nodes of the grid map. As the animal explores the environment, some place cells are selected over the others to build the grid field. After approximately 30 minutes of exploring randomly an unfamiliar 1 meter square maze, the grid map emerges (see Figure 1). The gridness scores for the resulting grid maps are above 1. The synapses mediating this mechanism can represent the connections between cells in CA1 and the deep layers of mEC. An important feature of this model is that the formation of grid fields is not unique to spatial information: a regular firing rate lattice can be formed from an input population with competing neurons tuned for non-spatial information. Overall, our model is in close agreement with the recently discovered grid cells in primates' visual system [4] and in bat's cortex [5].

Figure 1
figure 1

Average firing rate of a single simulated grid cell as a function of the rat's position (blue to red: 0 to 20 Hz).


  1. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI: Microstructure of a spatial map in the entorhinal cortex. Nature. 2005, 436 (7052): 801-806. 10.1038/nature03721.

    Article  CAS  PubMed  Google Scholar 

  2. Giocomo LM, Moser MB, Moser EI: Computational models of grid cells. Neuron. 2011, 71 (4): 589-603. 10.1016/j.neuron.2011.07.023.

    Article  CAS  PubMed  Google Scholar 

  3. Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser MB: Development of the spatial representation system in the rat. Science. 2010, 328 (5985): 1576-1580. 10.1126/science.1188210.

    Article  CAS  PubMed  Google Scholar 

  4. Killian NJ, Jutras MJ, Buffalo EA: A map of visual space in the primate entorhinal cortex. Nature. 2012, 491 (7426): 761-764.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Yartsev MM, Witter MP, Ulanovsky N: Grid cells without theta oscillations in the entorhinal cortex of bats. Nature. 2011, 479 (7371): 103-107. 10.1038/nature10583.

    Article  CAS  PubMed  Google Scholar 

Download references


Supported by Fundação para a Ciência e a Tecnologia (FCT) through the Centro de Matemática da Universidade do Porto. Luísa Castro was supported by the grant SFRH/BD/46329/2008 from FCT.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paulo Aguiar.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Castro, L., Aguiar, P. A model for grid cells where spatially correlated place cells compete for the grid map nodes. BMC Neurosci 14 (Suppl 1), P2 (2013).

Download citation

  • Published:

  • DOI: