Buhusi C, Meck W: What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience. 2005, 6 (10): 755-765.
CAS
PubMed
Google Scholar
Gallistel CR: The organization of learning. 1990, Cambridge, MA: MIT Press
Google Scholar
Meck WH, Penney TB, Pouthas V: Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008, 18 (2): 145-152. 10.1016/j.conb.2008.08.002.
CAS
PubMed
Google Scholar
Gibbon J: Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev. 1977, 84 (3): 279-325.
Google Scholar
Gibbon J, Allan L: Time perception - introduction. Ann N Y Acad Sci. 1984, 423: 1-10.1111/j.1749-6632.1984.tb23412.x.
Google Scholar
Gibbon J, Church RM: Sources of variance in an information processing theory of timing. Animal Cognition. Edited by: Roitblat HL, Bever TG, Terrace HS. 1984, Hillsdale, NJ: Erlbaum, 465-488.
Google Scholar
Boisvert MJ, Sherry DF: Interval timing by an invertebrate, the bumble bee Bombus impatiens. Curr Biol. 2006, 16 (16): 1636-1640. 10.1016/j.cub.2006.06.064.
CAS
PubMed
Google Scholar
Talton LE, Higa J: Interval schedule performance in the goldfish Carassius auratus. Behav Process. 1999, 45: 193-206. 10.1016/S0376-6357(99)00018-2.
CAS
Google Scholar
Cheng K, Westwood R: Analysis of single trials in pigeons’ timing performance. J Exp Psychol: Anim Behav Process. 1993, 19: 56-67.
Google Scholar
Dews PB: The effect of multiple S delta periods on responding on a fixed-interval schedule. J Exp Anal Behav. 1962, 5: 369-74. 10.1901/jeab.1962.5-369.
PubMed Central
CAS
PubMed
Google Scholar
Buhusi CV, Aziz D: Interval timing accuracy and scalar timing in C57BL/6 mice. Behav Neurosci. 2009, 123 (5): 1102-1113.
PubMed Central
PubMed
Google Scholar
Rakitin BC, Gibbon J, Penney TB, Malapani C, Hinton SC, Meck WH: Scalar expectancy theory and peak-interval timing in humans. J Exp Psychol: Anim Behav Processes. 1998, 24: 15-33.
CAS
Google Scholar
Matell MS, King GR, Meck WH: Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behav Neurosci. 2004, 118: 150-156.
CAS
PubMed
Google Scholar
Clarke S, Ivry R: The effects of various motor system lesions on time perception in the rat. Proceedings of the Annual Meeting of the Society for Neuroscience. 1997, Washington, DC: Society for Neuroscience; 23, 778-778.
Google Scholar
Dallal NL, Meck WH: Depletion of Dopamine in the caudate nucleus but not destruction of vestibular inputs impairs short-interval timing in rats. Soc Neurosci Abstr. 1993, 19: 1583.
Google Scholar
Matell MS, Chelius CM, Meck WH, Sakata S: Effect of unilateral or bilateral retrograde 6-OHDA lesions of the substantia nigra pars compacta on interval timing. Abstr-Soc Neurosci. 2000, 26: 650.
Google Scholar
Matell MS, Meck WH, Nicolelis MA: Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav Neurosci. 2003, 117: 760-773.
PubMed
Google Scholar
Maricq AV, Roberts S, Church RM: Methamphetamine and time estimation. J Exp Psychol: Anim Behav Process. 1981, 7: 18-30.
CAS
Google Scholar
Maricq AV, Church RM: The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychopharmacology. 1983, 79: 10-15. 10.1007/BF00433008.
CAS
PubMed
Google Scholar
Matell MS, Meck WH: A comparison of the tri-peak and peak- interval procedure in rats: equivalency of the clock speed enhancing effect of methamphetamine on interval timing. Abs-Soc Neurosci. 1997, 23: 1315-1316.
Google Scholar
Matell MS, Meck WH: Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res. 2004, 21 (2): 139-70. 10.1016/j.cogbrainres.2004.06.012.
Google Scholar
Meck WH: Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol: Anim Behav Process. 1983, 9 (2): 171-201.
CAS
Google Scholar
Meck WH: Neuropharmacology of timing and time perception. Cogn Brain Res. 1996, 3 (3–4): 227-242.
CAS
Google Scholar
Neil DB, Herndon Jr JG: Anatomical specificity within rat striatum for the dopaminergic modulation of DRL responding and activity. Brain Res. 1978, 153: 529-538. 10.1016/0006-8993(78)90337-2.
Google Scholar
Meck WH: Hippocampal function is required for feedback control of an internal clock’s criterion. Behav Neurosci. 1988, 1102: 54-60.
Google Scholar
Drew M, Fairhurst S, Malapani C, Horvitz J, Balsam P: Effects of dopamine antagonists on the timing of two intervals. Int J Psychophysiol. 2003, 75: 9-15.
CAS
Google Scholar
Harrington DL, Haaland KY, Hermanowicz N: Temporal processing in the basal ganglia. Neuropsychology. 1998, 12: 3-12.
CAS
PubMed
Google Scholar
Harrington DL, Haaland KY: Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci. 1999, 10: 91-116.
CAS
PubMed
Google Scholar
Hinton SC, Meck WH, MacFall JR: Peak-interval timing in humans activates frontal-striatal loops. NeuroImage. 1996, 3: S224-10.1016/S1053-8119(96)80226-6.
Google Scholar
Lejeune H, Maquet P, Bonnet M, Casini L, Ferrara A, Macar F, Pouthas V, Timsit-Berthier M, Vidal F: The basic pattern of activation in motor and sensory temporal tasks: positron emission tomography data. Neurosci Lett. 1997, 235 (1–2): 21-24.
CAS
PubMed
Google Scholar
Maquet P, Lejeune H, Pouthas V, Bonnet M, Casini L, Macar F, Timsit-Berthier M, Vidal F, Ferrara A, Degueldre C, Quaglia L, Delfiore G, Luxen A, Woods R, Maziotta J, Comar D: Brain activation induced by estimation of duration: a PET study. NeuroImage. 1996, 3: 119-126. 10.1006/nimg.1996.0014.
CAS
PubMed
Google Scholar
Rao S, Harrington D, Haaland K, Bobholz J, Cox R, Binder J: Distributed neural systems underlying the timing of movements. J Neurosci. 1997, 17: 5528-5535.
CAS
PubMed
Google Scholar
Rao S, Mayer A, Harrington D: The evolution of brain activation during temporal processing. Nat Neurosci. 2001, 4: 317-323. 10.1038/85191.
CAS
PubMed
Google Scholar
Coull JT, Vidal F, Nazarian B, Macar F: Functional anatomy of the attentional modulation of time estimation. Science. 2004, 303: 1506-1508. 10.1126/science.1091573.
CAS
PubMed
Google Scholar
Binkofski F, Block RA: Accelerated time experience after left frontal cortex lesion. Neurocase. 1996, 2: 485-493. 10.1080/13554799608402424.
Google Scholar
Malapani C, Rakitin B, Levy R, Meck W, Deweer B, Dubois B, Gibbon J: Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. J Cognit Neurosci. 1998, 10: 316-331. 10.1162/089892998562762.
CAS
Google Scholar
Nichelli P, Clark K, Hollnagel C, Grafman J: Duration processing after frontal lobe lesions. Ann N Y Acad Sci. 1995, 769: 183-190. 10.1111/j.1749-6632.1995.tb38139.x.
CAS
PubMed
Google Scholar
Meck WH: Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav. 1986, 25: 1185-1189. 10.1016/0091-3057(86)90109-7.
CAS
PubMed
Google Scholar
Harrington DL, Haaland KY: Sequencing in Parkinson’s disease. Abnormalities in programming and controlling movement. Brain Res. 1991, 114: 99-115.
Google Scholar
Malapani C, Deweer B, Gibbon J: Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease. J Cognit Neurosci. 2002, 14: 311-322. 10.1162/089892902317236920.
Google Scholar
Malapani C, Fairhurst S: Scalar timing in animals and humans. Learn Motiv. 2002, 33: 156-176. 10.1006/lmot.2001.1105.
Google Scholar
Meck WH, Church RM: Cholinergic modulation of the content of temporal memory. Behav Neurosci. 1987, 101: 457-464.
CAS
PubMed
Google Scholar
Meck WH, Church RM: Nutrients that modify the speed of internal clock and memory storage processes. Behav Neurosci. 1987, 101: 465-475.
CAS
PubMed
Google Scholar
Olton DS, Wenk GL, Church RM, Meck WH: Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia. 1988, 26: 307-318. 10.1016/0028-3932(88)90083-8.
CAS
PubMed
Google Scholar
Church RM, Broadbent HA: Alternative representations of time, number, and rate. Cognition. 1990, 37 (1–2): 55-81.
CAS
PubMed
Google Scholar
Church RM, Broadbent HA: A connectionist model of timing. Quantitative models of behavior: Neural networks and conditioning. Edited by: Commons ML, Grossberg S, Staddon JER. 1991, Hillsdale, NJ: Erlbaum, 225-240.
Google Scholar
Church R, Lacourse D, Crystal J: Temporal search as a function of the variability of interfood intervals. J Exp Psychol: Anim Behav Process. 1998, 24: 291-315.
CAS
Google Scholar
Crystal J: Systematic nonlinearities in the perception of temporal intervals. J Exp Psychol: Anim Behav Processes. 1999, 25: 3-17.
CAS
Google Scholar
Crystal J, Church R, Broadbent H: Systematic nonlinearities in the memory representation of time. J Exp Psychol: Anim Behav Processes. 1997, 23: 267-282.
CAS
Google Scholar
Wearden J, Doherty M: Exploring and developing a connec- tionist model of animal timing: peak procedure and fixed-interval simulations. J Exp Psychol: Anim Behav Processes. 1995, 23: 99-115.
Google Scholar
Aschoff J: Temporal orientation: circadian clocks in animals and humans. Anim Behav. 1989, 37: 881-896.
Google Scholar
Miall RC: The storage of time intervals using oscillating neurons. Neural Comput. 1989, 1: 359-371. 10.1162/neco.1989.1.3.359.
Google Scholar
Church R, Meck W, Gibbon J: Application of scalar timing theory to individual trials. J Exp Psychol: Anim Behav Processes. 1994, 20: 135-155.
CAS
Google Scholar
Schneider BA: A two-state analysis of fixed- interval responding in pigeons. J Exp Anal Behav. 1969, 12: 667-687.
Google Scholar
Fellous J, Tiesinga P, Thomas P, Sejnowski T: Discovering spike patterns in neuronal responses. J Neurosci. 2004, 24 (12): 2989-3001. 10.1523/JNEUROSCI.4649-03.2004.
PubMed Central
CAS
PubMed
Google Scholar
White J, Rubinstein J, Kay A: Channel noise in neurons. Trends Neurosci. 2000, 23: 99-115.
Google Scholar
Faisal A, Selen L, Wolpert D: Noise in the nervous system. Nat Rev Neurosci. 2008, 9: 292-303. 10.1038/nrn2258.
PubMed Central
CAS
PubMed
Google Scholar
Destexhe A, Rudolph M, Pare D: The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci. 2003, 4: 739-751. 10.1038/nrn1198.
CAS
PubMed
Google Scholar
Matsumura M, Cope T, Fetz EE: Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp Brain Res. 1988, 70: 463-469.
CAS
PubMed
Google Scholar
Steriade M, Timofeev I, Grenier F: Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 2001, 85: 1969-1985.
CAS
PubMed
Google Scholar
Clay JR, DeFelice LJ: Relationship between membrane excitability and single channel open-close kinetics. Biophys J. 1983, 42: 151-157. 10.1016/S0006-3495(83)84381-1.
PubMed Central
CAS
PubMed
Google Scholar
Rubinstein JT: Threshold fluctuations in an N sodium channel model of the noise of Ranvier. Biophys J. 1995, 68: 779-785. 10.1016/S0006-3495(95)80252-3.
PubMed Central
CAS
PubMed
Google Scholar
Chow CC, White JA: Spontaneous action potentials due to channel fluctuations. Biophys J. 1996, 71: 3013-3021. 10.1016/S0006-3495(96)79494-8.
PubMed Central
CAS
PubMed
Google Scholar
Englitz B, Stiefel K, Sejnowski T: Irregular firing of isolated cortical interneurons in vitro driven by intrinsic stochastic mechanisms. Neural Comput. 2008, 20: 44-64. 10.1162/neco.2008.20.1.44.
PubMed Central
PubMed
Google Scholar
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C: Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004, 5 (10): 793-807. 10.1038/nrn1519.
CAS
PubMed
Google Scholar
Calvin W, Stevens C: Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophys. 1968, 31: 574-587.
CAS
Google Scholar
Stevens CF, Zado AM: Input synchrony and the irregular firing of cortical neurons. Nat Neurosci. 1998, 1 (3): 210-217. 10.1038/659.
CAS
PubMed
Google Scholar
Morris C, Lecar H: Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981, 35: 193-213. 10.1016/S0006-3495(81)84782-0.
PubMed Central
CAS
PubMed
Google Scholar
Rinzel J, Ermentrout B: Analysis of neural excitability and oscillations. 1998, Cambridge, MA: MIT Press
Google Scholar
Hodgkin AL: The local electric changes associated with repetitive action in a non-medullated axon. J Phys. 1948, 107: 165-181.
CAS
Google Scholar
FitzHugh R: Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophys. 1955, 17: 257-278. 10.1007/BF02477753.
Google Scholar
Nagumo J, Arimoto S, Yoshizawa S: An active pulse transmission line simulating nerve axon. Proc IRE. 1962, 50: 2061-2070.
Google Scholar
White J, Budde T, Kay A: A bifurcation analysis of neuronal subthreshold oscillations. Biophys J. 1995, 64 (4): 1203-1217.
Google Scholar
Tateno T, Pakdaman K: Random dynamics of the Morris-Lecar neural model. Chaos. 2004, 14 (3): 511-530. 10.1063/1.1756118.
PubMed
Google Scholar
Beiser D, Houk J: Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. Clin Neurophys. 1998, 79: 3168-3188.
CAS
Google Scholar
Houk JC: Information processing in modular circuits linking basal ganglia and cerebral cortex. Models of, Information Processing in the Basal Ganglia. Edited by: Houk JC, Davis JL, Beiser DG. 1995, Cambridge, MA: MIT Press, 3-10.
Google Scholar
Houk JC, Barto AG, Adams JL: A model of how the basal ganglia generate and use neural signals that predict reinforcement. Models of, Information Processing in the Basal Ganglia. Edited by: Houk JC, Davis JL, Beiser DG. 1995, Cambridge, MA: MIT Press, 24-270.
Google Scholar
Umemiya M, Raymond L: Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. J Neurophys. 1997, 78: 1248-1255.
CAS
Google Scholar
Pignatelli M, Beyeler A, Leinekugel X: Neural circuits underlying the generation of theta oscillations. J Phys-Paris. 2012, 106 (34): 81-92.
Google Scholar
Rizzuto D, Madsen J, Bromfield E, Schulze-Bonhage A, Seelig D, Aschenbrenner-Scheibe R, Kahana M: Reset of human neocortical oscillations during a working memory task. Proc Nat Acad Sci USA. 2003, 100: 7931-7936. 10.1073/pnas.0732061100.
PubMed Central
CAS
PubMed
Google Scholar
Steriade M, Jones EG, Llinas RR: Thalamic oscillations and signaling. 1990, Oxford, England: John Wiley and Sons
Google Scholar
Oprisan S, Buhusi C: Modelling pharmacological clock and memory patterns of interval timing in a striatal beat-frequency model with realistic, noisy neurons. Front Integr Neurosci. 2011, 5: 52.
PubMed Central
PubMed
Google Scholar
Oprisan SA, Buhusi CV: How noise contributes to time-scale invariance of interval timing. Phys Rev E. 2013, 87 (5): 052717.
Google Scholar
Oprisan SA, Dix S, Buhusi CV: Phase resetting and its implications for interval timing with intruders. Behav Process. 2013, 1-10. in press.
Google Scholar
Buhusi CV, Oprisan SA: Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons. Behav Process. 2013, 95: 60-70. in press.
Google Scholar
Winfree A: The Geometry of Biological Time. 2001, New York: Springer-Verlag
Google Scholar
Izhikevich EM: Phase equations for relaxation oscillators. SIAM J Appl Math. 2000, 60: 1789-1805. 10.1137/S0036139999351001.
Google Scholar
Guckenheimer J, Holmes P: Nonlinear Oscillations, Dynamical systems and Bifurcations of Vector Fields. 1983, New York: Springer
Google Scholar
Kuramoto Y: Chemical Oscillations, Waves, and Turbulence. 1984, New York: Springer-Verlag
Google Scholar
Kuznetsov YA: Elements of Applied Bifurcation Theory, 3 edition. 2004, New York: Springer
Google Scholar
Ermentrout G: Losing amplitude and saving phase, Volume 66. 1986, Berlin - New York: Springer
Google Scholar
Papoulis A, Pillai SU: Probability, Random Variables and Stochastic Processes, 4 edition. 2002, USA: McGraw Hill
Google Scholar
Spiegel MR: Theory and Problems of Probability and Statistics. 1992, New York: McGraw-Hill
Google Scholar
Reyes A, Fetz E: How modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J Neurophys. 1993, 69: 1661-1672.
CAS
Google Scholar
Tateno T, Harsch A, Robinson H: Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: type 1 and type 2 dynamics. J Neurophys. 2004, 92: 2283-2299. 10.1152/jn.00109.2004.
CAS
Google Scholar
Stein EM, Shakarchi R: Fourier Analysis: An Introduction. 2003, Princeton and Oxford: Princeton University Press
Google Scholar
Braun H, Wissing H, Schafer K, Hirsch M: Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature. 1994, 367: 270-273. 10.1038/367270a0.
CAS
PubMed
Google Scholar
Douglass J, Wilkens L, Pantazelou E, Moss F: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature. 1993, 365: 337-340. 10.1038/365337a0.
CAS
PubMed
Google Scholar
Galan R, Fourcaud-Trocme N, Ermentrout GB, Urban NN: Correlation-induced synchronization of oscillations in olfactory bulb neurons. J Neurosci. 2006, 26: 3646-3655. 10.1523/JNEUROSCI.4605-05.2006.
CAS
PubMed
Google Scholar
Tateno T, Robinson H: Quantifying noise-induced stability of a cortical fast-spiking cell model with Kv3-channel-like current. Biosystems. 2007, 86 (1–3): 110-116.
Google Scholar
Ditlevsen S, Greenwood P: The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. J Math Bio. 2013, 67 (2): 239-159. 10.1007/s00285-012-0552-7.
Google Scholar
Killeen PR, Fetterman JG: A behavioral theory of timing. Psychol Rev. 1988, 95 (2): 274-95.
CAS
PubMed
Google Scholar
Grossberg S, Schmajuk N: Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw. 1989, 2: 79-102. 10.1016/0893-6080(89)90026-9.
Google Scholar
Grossberg S, Merrill JW: A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Brain Res Cogn Brain Res. 1992, 1 (1): 3-38. 10.1016/0926-6410(92)90003-A.
CAS
PubMed
Google Scholar
Machado A: Learning the temporal dynamics of behavior. Psychol Rev. 1997, 104 (2): 241-65.
CAS
PubMed
Google Scholar
Staddon JER, Higa JJ: Time and memory: towards a pacemaker-free theory of interval timing. J Exp Anal Behav. 1999, 71 (2): 215-251. 10.1901/jeab.1999.71-215.
PubMed Central
CAS
PubMed
Google Scholar
Staddon JER, Higa JJ, Chelaru IM: Time, trace, memory. J Exp Anal Behav. 1999, 71 (2): 293-301. 10.1901/jeab.1999.71-293.
PubMed Central
CAS
PubMed
Google Scholar
Leon MI, Shadlen MN: Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 2003, 38 (2): 317-327. 10.1016/S0896-6273(03)00185-5.
CAS
PubMed
Google Scholar
Simen P, Balci F, deSouza L, Cohen JD, Holmes P: A model of interval timing by neural integration. J Neurosci. 2011, 31 (25): 9238-9253. 10.1523/JNEUROSCI.3121-10.2011.
PubMed Central
CAS
PubMed
Google Scholar
Reutimann J, Yakovlev V, Fusi S, Senn W: Climbing neuronal activity as an event-based cortical representation of time. J Neurosci. 2004, 24: 3295-3303. 10.1523/JNEUROSCI.4098-03.2004.
CAS
PubMed
Google Scholar
Gallistel CR, Gibbon J: Time, rate, and conditioning. Psychol Rev. 2000, 107: 289-344.
CAS
PubMed
Google Scholar
Karmarkar UR, Buonomano DV: Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007, 53 (3): 427-438. 10.1016/j.neuron.2007.01.006.
PubMed Central
CAS
PubMed
Google Scholar
Ermentrout GB: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 1996, 8 (5): 979-1001. 10.1162/neco.1996.8.5.979.
CAS
PubMed
Google Scholar