Dudley-Javoroski S, Shields RK: Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev. 2008, 45 (2): 283-296. 10.1682/JRRD.2007.02.0031.
Article
PubMed Central
PubMed
Google Scholar
Biering-Sorensen B, Kristensen IB, Kjaer M, Biering-Sorensen F: Muscle after spinal cord injury. Muscle Nerve. 2009, 40 (4): 499-519. 10.1002/mus.21391.
Article
PubMed
Google Scholar
Qin W, Bauman WA, Cardozo C: Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci. 2010, 1211 (1): 66-84. 10.1111/j.1749-6632.2010.05806.x.
Article
PubMed
Google Scholar
Feige JN, Auwerx J: Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol. 2007, 17 (6): 292-301. 10.1016/j.tcb.2007.04.001.
Article
CAS
PubMed
Google Scholar
Wu Y, Zhao J, Zhao W, Pan J, Bauman WA, Cardozo CP: Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury. J Neurotrauma. 2012, 29 (8): 1663-1675. 10.1089/neu.2011.2203.
Article
PubMed
Google Scholar
Kim SJ, Roy RR, Kim JA, Zhong H, Haddad F, Baldwin KM, Edgerton VR: Gene expression during inactivity-induced muscle atrophy: effects of brief bouts of a forceful contraction countermeasure. J Appl Physiol. 2008, 105 (4): 1246-1254. 10.1152/japplphysiol.90668.2008.
Article
PubMed Central
PubMed
Google Scholar
Baldi JC, Jackson RD, Moraille R, Mysiw WJ: Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord. 1998, 36 (7): 463-469. 10.1038/sj.sc.3100679.
Article
CAS
PubMed
Google Scholar
Andersen JL, Mohr T, Biering-Sorensen F, Galbo H, Kjaer M: Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflugers Arch. 1996, 431 (4): 513-518. 10.1007/BF02191897.
Article
CAS
PubMed
Google Scholar
Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B: Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals?. Arch Phys Med Rehabil. 2000, 81 (8): 1090-1098. 10.1053/apmr.2000.7170.
Article
CAS
PubMed
Google Scholar
Crameri RM, Weston A, Climstein M, Davis GM, Sutton JR: Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sports. 2002, 12 (5): 316-322. 10.1034/j.1600-0838.2002.20106.x.
Article
CAS
PubMed
Google Scholar
Scremin AM, Kurta L, Gentili A, Wiseman B, Perell K, Kunkel C, Scremin OU: Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil. 1999, 80 (12): 1531-1536. 10.1016/S0003-9993(99)90326-X.
Article
CAS
PubMed
Google Scholar
Peckham PH, Mortimer JT, Marsolais EB: Alteration in the force and fatigability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. Clin Orthop Relat Res. 1976, 114: 326-333.
PubMed
Google Scholar
Sabatier MJ, Stoner L, Mahoney ET, Black C, Elder C, Dudley GA, McCully K: Electrically stimulated resistance training in SCI individuals increases muscle fatigue resistance but not femoral artery size or blood flow. Spinal Cord. 2006, 44 (4): 227-233. 10.1038/sj.sc.3101834.
Article
CAS
PubMed
Google Scholar
Shields RK, Dudley-Javoroski S: Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training. Neurorehabil Neural Repair. 2007, 21 (2): 169-179. 10.1177/1545968306293447.
Article
PubMed Central
PubMed
Google Scholar
Liu D, Sartor MA, Nader GA, Gutmann L, Treutelaar MK, Pistilli EE, Iglayreger HB, Burant CF, Hoffman EP, Gordon PM: Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC Genomics. 2010, 11: 659-10.1186/1471-2164-11-659.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown D, Hikim AP, Kovacheva EL, Sinha-Hikim I: Mouse model of testosterone-induced muscle fiber hypertrophy: involvement of p38 mitogen-activated protein kinase-mediated Notch signaling. J Endocrinol. 2009, 201 (1): 129-139. 10.1677/JOE-08-0476.
Article
CAS
PubMed
Google Scholar
Kovacheva EL, Hikim AP, Shen R, Sinha I, Sinha-Hikim I: Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology. 2010, 151 (2): 628-638. 10.1210/en.2009-1177.
Article
PubMed Central
CAS
PubMed
Google Scholar
Armstrong DD, Wong VL, Esser KA: Expression of beta-catenin is necessary for physiological growth of adult skeletal muscle. Am J Physiol Cell Physiol. 2006, 291 (1): C185-C188. 10.1152/ajpcell.00644.2005.
Article
CAS
PubMed
Google Scholar
Armstrong DD, Esser KA: Wnt/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol. 2005, 289 (4): C853-C859. 10.1152/ajpcell.00093.2005.
Article
CAS
PubMed
Google Scholar
Sakuma K, Yamaguchi A: The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol. 2010, 2010: 721219.
Article
PubMed Central
PubMed
Google Scholar
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, et al: Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001, 3 (11): 1014-1019. 10.1038/ncb1101-1014.
Article
CAS
PubMed
Google Scholar
Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z: Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005, 280 (20): 19587-19593. 10.1074/jbc.M408862200.
Article
CAS
PubMed
Google Scholar
Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO: Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem. 2007, 282 (1): 194-199.
Article
CAS
PubMed
Google Scholar
Adams CM, Suneja M, Dudley-Javoroski S, Shields RK: Altered mRNA expression after long-term soleus electrical stimulation training in humans with paralysis. Muscle Nerve. 2011, 43 (1): 65-75. 10.1002/mus.21831.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rochester L, Barron MJ, Chandler CS, Sutton RA, Miller S, Johnson MA: Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia. 1995, 33 (9): 514-522. 10.1038/sc.1995.112.
Article
CAS
PubMed
Google Scholar
Goldberg AL: Work-induced growth of skeletal muscle in normal and hypophysectomized rats. Am J Physiol. 1967, 213 (5): 1193-1198.
CAS
PubMed
Google Scholar
Carson JA, Nettleton D, Reecy JM: Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J. 2002, 16 (2): 207-209.
CAS
PubMed
Google Scholar
von Maltzahn J, Bentzinger CF, Rudnicki MA: Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol. 2012, 14 (2): 186-191.
Article
CAS
Google Scholar
Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, et al: Identification of a Wnt/Dvl/beta-Catenin –>Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002, 111 (5): 673-685. 10.1016/S0092-8674(02)01084-X.
Article
CAS
PubMed
Google Scholar
Amen M, Liu X, Vadlamudi U, Elizondo G, Diamond E, Engelhardt JF, Amendt BA: PITX2 and beta-catenin interactions regulate Lef-1 isoform expression. Mol Cell Biol. 2007, 27 (21): 7560-7573. 10.1128/MCB.00315-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conboy IM, Rando TA: The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell. 2002, 3 (3): 397-409. 10.1016/S1534-5807(02)00254-X.
Article
CAS
PubMed
Google Scholar
Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA: A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell. 2008, 2 (1): 50-59. 10.1016/j.stem.2007.10.006.
Article
CAS
PubMed
Google Scholar
Schiaffino S: Fibre types in skeletal muscle: a personal account. Acta Physiol (Oxf). 2010, 199 (4): 451-463. 10.1111/j.1748-1716.2010.02130.x.
Article
CAS
Google Scholar
Qin W, Pan J, Bauman WA, Cardozo CP: Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy. BMC Genomics. 2010, 11 (1): 596-10.1186/1471-2164-11-596.
Article
PubMed Central
PubMed
Google Scholar
Zeman RJ, Zhao J, Zhang Y, Zhao W, Wen X, Wu Y, Pan J, Bauman WA, Cardozo C: Differential skeletal muscle gene expression after upper or lower motor neuron transection. Pflugers Arch. 2009, 458 (3): 525-535. 10.1007/s00424-009-0643-5.
Article
CAS
PubMed
Google Scholar
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, et al: Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002, 418 (6899): 797-801. 10.1038/nature00904.
Article
CAS
PubMed
Google Scholar
Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR: Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol. 2005, 98 (2): 482-488.
CAS
PubMed
Google Scholar
Bickel CS, Slade JM, Haddad F, Adams GR, Dudley GA: Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol. 2003, 94 (6): 2255-2262.
Article
CAS
PubMed
Google Scholar
Chilibeck PD, Bell G, Jeon J, Weiss CB, Murdoch G, MacLean I, Ryan E, Burnham R: Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism. 1999, 48 (11): 1409-1413. 10.1016/S0026-0495(99)90151-8.
Article
CAS
PubMed
Google Scholar
Mahoney ET, Bickel CS, Elder C, Black C, Slade JM, Apple D, Dudley GA: Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehabil. 2005, 86 (7): 1502-1504. 10.1016/j.apmr.2004.12.021.
Article
PubMed
Google Scholar
Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA: Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol. 2011, 589 (Pt 7): 1831-1846.
Article
PubMed Central
CAS
PubMed
Google Scholar
Philp A, Hamilton DL, Baar K: Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol. 2011, 110 (2): 561-568. 10.1152/japplphysiol.00941.2010.
Article
CAS
PubMed
Google Scholar
Spangenburg EE, Le Roith D, Ward CW, Bodine SC: A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol. 2008, 586 (1): 283-291.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carter JG, Sokoll MD, Gergis SD: Effect of spinal cord transection on neuromuscular function in the rat. Anesthesiology. 1981, 55 (5): 542-546. 10.1097/00000542-198111000-00011.
Article
CAS
PubMed
Google Scholar
Shields RK: Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J Neurophysiol. 1995, 73 (6): 2195-2206.
CAS
PubMed
Google Scholar
Talmadge RJ, Castro MJ, Apple DF, Dudley GA: Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol. 2002, 92 (1): 147-154.
Article
CAS
PubMed
Google Scholar
Beard NA, Laver DR, Dulhunty AF: Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol. 2004, 85 (1): 33-69. 10.1016/j.pbiomolbio.2003.07.001.
Article
CAS
PubMed
Google Scholar
Protasi F, Paolini C, Canato M, Reggiani C, Quarta M: Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all. J Muscle Res Cell Motil. 2011, 32 (4–5): 257-270.
Article
CAS
PubMed
Google Scholar
Bickel CS, Slade JM, Dudley GA: Long-term spinal cord injury increases susceptibility to isometric contraction-induced muscle injury. Eur J Appl Physiol. 2004, 91 (2–3): 308-313.
Article
PubMed
Google Scholar
Lepola V, Vaananen K, Jalovaara P: The effect of immobilization on the torsional strength of the rat tibia. Clin Orthop Relat Res. 1993, 297: 55-61.
PubMed
Google Scholar
Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM: Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem. 2007, 282 (41): 30014-30021. 10.1074/jbc.M704817200.
Article
CAS
PubMed
Google Scholar
Lu Z, Xu X, Hu X, Fassett J, Zhu G, Tao Y, Li J, Huang Y, Zhang P, Zhao B, et al: PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal. 2010, 13 (7): 1011-1022. 10.1089/ars.2009.2940.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen BP, Wolfgang CD, Hai T: Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol. 1996, 16 (3): 1157-1168.
Article
PubMed Central
PubMed
Google Scholar
Zhou H, Shen DF, Bian ZY, Zong J, Deng W, Zhang Y, Guo YY, Li H, Tang QZ: Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload. PLoS One. 2011, 6 (10): e26744-10.1371/journal.pone.0026744.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsukamoto Y, Hijiya N, Yano S, Yokoyama S, Nakada C, Uchida T, Matsuura K, Moriyama M: Arpp/Ankrd2, a member of the muscle ankyrin repeat proteins (MARPs), translocates from the I-band to the nucleus after muscle injury. Histochem Cell Biol. 2008, 129 (1): 55-64. 10.1007/s00418-007-0348-9.
Article
CAS
PubMed
Google Scholar
Barash IA, Bang ML, Mathew L, Greaser ML, Chen J, Lieber RL: Structural and regulatory roles of muscle ankyrin repeat protein family in skeletal muscle. Am J Physiol Cell Physiol. 2007, 293 (1): C218-C227. 10.1152/ajpcell.00055.2007.
Article
CAS
PubMed
Google Scholar
Arimura T, Bos JM, Sato A, Kubo T, Okamoto H, Nishi H, Harada H, Koga Y, Moulik M, Doi YL, et al: Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009, 54 (4): 334-342. 10.1016/j.jacc.2008.12.082.
Article
CAS
PubMed
Google Scholar
Moulik M, Vatta M, Witt SH, Arola AM, Murphy RT, McKenna WJ, Boriek AM, Oka K, Labeit S, Bowles NE, et al: ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol. 2009, 54 (4): 325-333. 10.1016/j.jacc.2009.02.076.
Article
PubMed Central
CAS
PubMed
Google Scholar
Russold M, Jarvis JC: Implantable stimulator featuring multiple programs, adjustable stimulation amplitude and bi-directional communication for implantation in mice. Med Biol Eng Comput. 2007, 45 (7): 695-699. 10.1007/s11517-007-0190-1.
Article
PubMed
Google Scholar
Carvalho BS, Irizarry RA: A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010, 26 (19): 2363-2367. 10.1093/bioinformatics/btq431.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004, 5 (10): R80-10.1186/gb-2004-5-10-r80.
Article
PubMed Central
PubMed
Google Scholar
Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite. Methods Enzymol. 2006, 411: 134-193.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar