Villringer A, Dirnagl U: Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev. 1995, 7: 240-276.
CAS
PubMed
Google Scholar
Thompson JK, Peterson MR, Freeman RD: Single-neuron activity and tissue oxygenation in the cerebral cortex. Science. 2003, 299: 1070-1071. 10.1126/science.1079220.
Article
CAS
PubMed
Google Scholar
Pillai JJ: Insights into adult postlesional language cortical plasticity provided by cerebral blood oxygen level-dependent functional MR imaging. AJNR Am J Neuroradiol. 2010, 31: 990-996. 10.3174/ajnr.A1896.
Article
CAS
PubMed
Google Scholar
Malonek D, Dirnagl U, Lindauer U, Yamada K, Kanno I, Grinvald A: Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci USA. 1997, 94: 14826-14831. 10.1073/pnas.94.26.14826.
Article
PubMed Central
CAS
PubMed
Google Scholar
Herman IM, D'Amore PA: Microvascular pericytes contain muscle and non-muscle actins. J Cell Biol. 1985, 101: 43-52. 10.1083/jcb.101.1.43.
Article
CAS
PubMed
Google Scholar
Tilton RG: Capillary pericytes: perspectives and future trends. J Electron Microsc Tech. 1991, 19: 327-344. 10.1002/jemt.1060190308.
Article
CAS
PubMed
Google Scholar
Metea MR, Newman EA: Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006, 26: 2862-2870. 10.1523/JNEUROSCI.4048-05.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peppiatt CM, Howarth C, Mobbs P, Attwell D: Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006, 443: 700-704. 10.1038/nature05193.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fernández-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U: Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci USA. 2010, 107: 22290-22295. 10.1073/pnas.1011321108.
Article
PubMed Central
PubMed
Google Scholar
Hamilton NB, Attwell D, Hall CN: Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics. 2010, 2: 5-18.
Article
PubMed Central
PubMed
Google Scholar
Bonkowski D, Katyshev V, Balanov RD, Borisov A, Dore-Duffy P: The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011, 8: 8-10.1186/2045-8118-8-8.
Article
PubMed Central
PubMed
Google Scholar
Dalkara T, Gursoy-Ozdemir Y, Yemisci M: Brain microvascular pericytes in health and disease. Acta Neuropathol. 2011, 122: 1-9. 10.1007/s00401-011-0847-6.
Article
PubMed
Google Scholar
Nehls V, Drenckhahn D: Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol. 1991, 113: 147-154. 10.1083/jcb.113.1.147.
Article
CAS
PubMed
Google Scholar
Argandoña EG, Lafuente JV: Effects of dark-rearing on the vascularization of the developmental rat visual cortex. Brain Res. 1996, 732: 43-51. 10.1016/0006-8993(96)00485-4.
Article
PubMed
Google Scholar
Black JE, Issacs KR, Anderson BJ, Alcantara AA, Greenough WT: Learning causes synaptogenesis whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA. 1990, 87: 5568-5572. 10.1073/pnas.87.14.5568.
Article
PubMed Central
CAS
PubMed
Google Scholar
LaManna JC, Chavez JC, Pichiule P: Structural and functional adaptation to hypoxia in the rat brain. J Exp Biol. 2004, 207: 3163-3169. 10.1242/jeb.00976.
Article
CAS
PubMed
Google Scholar
Alonso G, Galibert E, Duvoid-Guillou A, Vincent A: Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor. BMC Neurosci. 2005, 24: 6-20.
Google Scholar
Weber B, Keller AL, Reichold J, Logothetis NK: The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb Cortex. 2008, 18: 2318-2330. 10.1093/cercor/bhm259.
Article
PubMed
Google Scholar
Balabanov R, Dore-Duffy P: Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998, 53: 637-644. 10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO;2-6.
Article
CAS
PubMed
Google Scholar
del Zoppo GJ: The neurovascular unit in the setting of stroke. J Intern Med. 2010, 267: 156-171. 10.1111/j.1365-2796.2009.02199.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bell MA, Scarrow WG: Staining for microvascular alkaline phosphatase in thick celloidin sections of nervous tissue: morphometric and pathological application. Microvasc Res. 1984, 27: 189-203. 10.1016/0026-2862(84)90053-0.
Article
CAS
PubMed
Google Scholar
Harrison R, Harel N, Panesar J, Mount R: Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb Cortex. 2002, 12: 125-233.
Article
Google Scholar
Chilingaryan A, Chilingaryan AM, Martin GG: The three-dimensional direction of microvasculature bed in the brain of white Rattus norvergicus by a Ca2+-ATPase method. Brain Res. 2006, 1070: 131-138. 10.1016/j.brainres.2005.11.059.
Article
CAS
PubMed
Google Scholar
Resse TS, Karnovsky MJ: Fine structural localization of a blood-brain-barrier to exogenous peroxidase. J Cell Biol. 1967, 34: 207-217. 10.1083/jcb.34.1.207.
Article
Google Scholar
Peters A, Palay S, Webster H: The fine structure of the nervous system. 1991, Oxford: Oxford University Press
Google Scholar
Tata DA, Anderson BJ: A new method for the investigation of capillary structure. J Neurosc Methods. 2002, 113: 199-206. 10.1016/S0165-0270(01)00494-0.
Article
CAS
Google Scholar
Pacheco P, González-Bernabé G, Alvarado M, Camacho M, Cuevas E, Carrillo P: Brain microvasculature of the rat: Its integrative organization [abstract]. Soc Neurosci SfN. 2005, 189: 8.
Google Scholar
Cortés-Sol A, Domínguez A, Alvarado M, Lara-García M, Camacho M, Pacheco P: Capillary distribution in magnocellular and parvocellular area of paraventricular nucleus of virgin and lactating rats [abstract]. Soc Neurosci SfN. 2008, 395: 15.
Google Scholar
Van den Pol AN: The magnocellular and parvocellular paraventricular nucleus of the rat: intrinsic organization. J Comp Neurol. 1982, 206: 317-345. 10.1002/cne.902060402.
Article
CAS
PubMed
Google Scholar
Swanson LW, Sawchenko PE: Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci. 1983, 6: 269-324. 10.1146/annurev.ne.06.030183.001413.
Article
CAS
PubMed
Google Scholar
Armstrong WE: Hypothalamic supraoptic and paraventricular nuclei. The rat nervous system. Edited by: Paxinos G. 1985, Sydney: Academic Press, 119-128.
Google Scholar
Moos F, Richard P: Paraventricular and supraoptic bursting oxytocin cells in rat are locally regulated by oxytocin and functionally related. J Physiol. 1989, 408: 1-18.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wakerley JB: Milk ejection and its control. Physiology of reproduction. Edited by: Knobil E, Neill JD. 2006, New York: Academic Press, Elsevier, 3129-3176. 3
Google Scholar
Newman I, Russell JA, Landgraf R: Oxytocin and vasopressin release within the supraoptic and paraventricular nuclei of pregnant, parturient and lactating rats: a microdialysis study. Neuroscience. 1993, 53: 65-75. 10.1016/0306-4522(93)90285-N.
Article
Google Scholar
Jiang QB, Wakerley JB: Analysis of bursting responses of oxytocin neurons in the rat in late pregnancy, lactation and after weaning. J Physiol. 1995, 486: 237-248.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mena F, Pacheco P, Aguayo D, Clapp C, Grosvenor CE: A rise in intramammary pressure follows electrical stimulation of mammary nerve in anesthetized rats. Endocrinology. 1978, 103: 1929-1936. 10.1210/endo-103-5-1929.
Article
CAS
PubMed
Google Scholar
Sutherland RC, Aizlewood ES, Wakerley JB: Changing characteristics of the milk ejection reflex during pregnancy, lactation and after weaning in the rat. J Reprod Fertil. 1986, 76: 123-130. 10.1530/jrf.0.0760123.
Article
CAS
PubMed
Google Scholar
Paxinos G, Watson C: The rat brain in stereotaxic coordinates. 2007, London: Academic Press, Elsevier
Google Scholar
Ambach G, Palkovits M: Blood supply of the rat hypothalamus. II. Nucleus paraventricularis. Acta Morphol Acad Sci Hung. 1974, 22: 311-320.
CAS
PubMed
Google Scholar
Sposito NM, Gross PM: Morphometry of individual capillary beds in the hypothalamus-neurohypophysial system of rats. Brain Res. 1987, 403: 375-379. 10.1016/0006-8993(87)90079-5.
Article
CAS
PubMed
Google Scholar
Catheline G, Touquet B, Lombard MC, Poulain DA, Theodosis DT: A study of the role of neuro-glial remodeling in the oxytocin system at lactation. Neuroscience. 2006, 137: 309-316. 10.1016/j.neuroscience.2005.08.042.
Article
CAS
PubMed
Google Scholar
Theodosis DT, Trailin A, Poulain DA: Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2006, 290: 1175-1182.
Article
Google Scholar
Lin SH, Miyata S, Matsunaga W, Kawarabayashi T, Nakashima T, Kiyohara T: Metabolic mapping of the brain in pregnant, parturient and lactating rats using fos immunohistochemistry. Brain Res. 1998, 787: 226-236. 10.1016/S0006-8993(97)01484-4.
Article
CAS
PubMed
Google Scholar
Laurie GW, Leblond CP, Martin GR: Localization of type IV collagen, laminin, heparin sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol. 1982, 95: 340-344. 10.1083/jcb.95.1.340.
Article
CAS
PubMed
Google Scholar
Charron AJ, Xu W, Bacallao RL, Wandinger-Ness A: Cablin: a novel protein of the capillary basal lamina. Am J Physiol Heart Circ Physiol. 1999, 277: 1985-1996.
Google Scholar
del Zoppo GJ, Milner R: Integrin-matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol. 2006, 26: 1966-1975. 10.1161/01.ATV.0000232525.65682.a2.
Article
CAS
PubMed
Google Scholar
Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J: Molecular biology of the cell. 2007, New York: Garland Science, Taylor & Francis Group
Google Scholar
Sanders AG, Ebert RH, Florey HW: The mechanism of capillary contraction. Q J Exp Physiol Cogn Med Sci. 1940, 30: 281-287.
Google Scholar
Rosso L, Peteri-Brunbäck B, Poujeol P, Hussy N, Mienville JM: Vasopressin-induced taurine efflux from rat pituicytes: a potential negative feedback for hormone secretion. J Physiol. 2004, 554: 731-742.
Article
PubMed Central
CAS
PubMed
Google Scholar
Avella M, Ducoudret O, Pisani DF, Poujeol P: Swelling-activated transport of taurine in cultured gill cells of sea bass: physiological adaptation and pavement cell plasticity. Am J Physiol Regul Integr Comp Physiol. 2009, 296: 1149-1160. 10.1152/ajpregu.90615.2008.
Article
Google Scholar
Lang F: Mechanisms and significance of cell volume regulation. J Am Coll Nutr. 2007, 26: 613-623.
Article
Google Scholar
Yool AJ: Aquaporins: multiple roles in the central nervous system. Neuroscientist. 2007, 13: 470-485. 10.1177/1073858407303081.
Article
CAS
PubMed
Google Scholar
Freeman LR, Keller JN: Oxidative stress and cerebral endothelial cells: regulation of the blood-brain-barrier and antioxidant based interventions. Biochim Biophys Acta. 2012, 1822: 822-829. 10.1016/j.bbadis.2011.12.009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Simionescu N, Simionescu M, Palade GE: Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol. 1981, 90: 605-613.
CAS
PubMed
Google Scholar
Tuma PL, Hubbard AL: Transcytosis: crossing cellular barriers. Physiol Rev. 2003, 83: 871-932.
Article
CAS
PubMed
Google Scholar
Landgraf R, Neumann ID: Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004, 25: 150-76. 10.1016/j.yfrne.2004.05.001.
Article
CAS
PubMed
Google Scholar
Parker SL, Armstrong WE, Sladek CD, Grosvenor CE, Crowley WR: Prolactin stimulated the release of oxytocin in lactating rats: evidence for a physiological role via an action at the neural lobe. Neuroendocrinology. 1991, 53: 503-510. 10.1159/000125764.
Article
CAS
PubMed
Google Scholar
Vega C, Moreno-Carranza B, Zamorano V, Quintanar-Stéphano A, Méndez I, Thebault S, Martínez De La Escalera G, Clapp C: Prolactin promotes oxytocin and vasopressin release by activating neuronal nitric oxide synthase in the supraoptic and paraventricular nuclei. Am J Physiol Regul Integr Comp Physiol. 2010, 299: 1762-1770.
Article
Google Scholar
Ivanov KP, Kalinina MK, Levkovich Yu I: Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvasc Res. 1981, 22: 143-155. 10.1016/0026-2862(81)90084-4.
Article
CAS
PubMed
Google Scholar
Nnodim JO: Quantitative study of the effects of denervation and castration on the levator ani muscle of the rat. Anat Rec. 1999, 255: 324-33. 10.1002/(SICI)1097-0185(19990701)255:3<324::AID-AR8>3.0.CO;2-1.
Article
CAS
PubMed
Google Scholar
Alvarado M, Cuevas E, Lara-García M, Camacho M, Carrillo P, Hudson R, Pacheco P: Effect of gonadal hormones on the cross-sectional area of pubococcygeus muscle fibers in male rat. Anat Rec. 2008, 291: 586-92. 10.1002/ar.20694.
Article
Google Scholar