Skip to main content

The relationship between cortical network structure and the corresponding state space dynamics

Most studies on the dynamics of recurrent cortical networks are either based on purely random wiring or neighborhood couplings [13]. Neuronal wiring in the cortex, however, shows a complex spatial pattern composed of local and long-range patchy connections, i.e., spatially clustered synapses [4, 5].

We ask to what extent such geometric traits influence the 'idle' dynamics of cortical network models. Assuming an enlarged spatial scale we consider distinct network architectures, ranging from purely random or purely locally coupled neurons to distance dependent connectivities that also include patchy projections. Approximately 50000 neurons are spatially embedded in a 2D sheet of cortex with a side length of five millimeters in order to account for remotely established synapses. Neurons are implemented as conductance based integrate-and-fire neurons with distance-dependent synaptic delays. Network dynamics are simulated with NEST/PyNN [6].

Analyzing the characteristic measures describing spiking neuronal networks (e.g. the correlation coefficient or the coefficient of variation), we explore and compare the phase spaces and activity patterns of our simulation results. As expected from random networks, different dynamical states (e.g. synchronous regular 'SR' or asynchronous irregular 'AI' firing) occur in dependence of the input rate and the relation between exc. and inh. synaptic strengths [13]. Non-random networks, however, exhibit higher firing rates, sharper transitions, as well as various types of complex network activities. For example, the amount of local connections clearly influences the boundaries at which the network switches from high (SR) to low (AI) activity. Distance-dependent connectivity structures induce 'new' raster plots, e.g., oblique stripes or spiral structures representing planar and spherical wave propagation. To better describe such activity patterns we computed a delay-dependent correlation coefficient. Such spike patterns indicate a spatio-temporal spread of activity that random networks cannot account for. Furthermore, to determine stability and signal propagation properties, we applied spatially restricted activity injections. Depending on the network architecture, the dynamics may change from AI to SR or wave-like activity, and then switch back or not.

We conclude that (the amount of) local distance-dependent connections is an important structural feature of cortical networks since it induces rather complex activity patterns compared to random connectivities. However, we found no clear differences in the dynamics of networks with randomly distributed compared to spatially clustered long-range projections. Further analysis is needed to explore the functional aspects of patchy projection patterns.


  1. Brunel N: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 2000, 8 (3): 183-208. 10.1023/A:1008925309027.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar A, Schrader S, Aertsen A, Rotter S: The high conductance state of cortical networks. Neural Computation. 2008, 20: 1-43. 10.1162/neco.2008.20.1.1.

    Article  PubMed  Google Scholar 

  3. Voges N, Perrinet L: Phase space analysis of networks based on biologically realistic parameters. J Phys Paris. 2009, 104: 51-60.

    Article  Google Scholar 

  4. Binzegger T, Douglas RJ, Martin KAC: Stereotypical bouton clustering of individual neurons in cat primary visual cortex. J. of Neurosci. 2007, 27 (45): 12242-12254. 10.1523/JNEUROSCI.3753-07.2007.

    Article  CAS  Google Scholar 

  5. Voges N, Schüz A, Aertsen A, Rotter S: A modeler's view on the spatial structure of intrinsic horizontal connectivity in the neocortex. Prog Neurobiol. 2010, 92 (3): 277-292. 10.1016/j.pneurobio.2010.05.001.

    Article  PubMed  Google Scholar 

  6. Gewaltig MO, Diesmann M: Nest. Scholarpedia. 2 (4): 1430-10.4249/scholarpedia.1430.

Download references


This work was supported by EU Grant 15879 (FACETS).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nicole Voges.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Voges, N., Perrinet, L. The relationship between cortical network structure and the corresponding state space dynamics. BMC Neurosci 12 (Suppl 1), P345 (2011).

Download citation

  • Published:

  • DOI: