Volume 12 Supplement 1

Twentieth Annual Computational Neuroscience Meeting: CNS*2011

Open Access

Networks of phase-amplitude neural oscillators

BMC Neuroscience201112(Suppl 1):P332


Published: 18 July 2011

In mathematical descriptions of oscillating neural cells, phase reduction techniques can be used to simplify the model to a one-dimensional system [1]. This reduction allows for deeper mathematical analysis of the system, and for simulation of larger networks, since the resulting model is computationally cheaper. However, if a limit cycle is not strongly attracting then this reduction may poorly characterise behaviour of the original system when under forcing, for example, synaptic input. Here we consider a coordinate transformation to a phase-amplitude framework [2] that allows one to track the evolution of distance from the cycle as well as phase on cycle. A number of common models in computational neuroscience (including FitzHugh-Nagumo and Morris-Lecar) are revisited in this framework and their response to pulsatile current forcing is investigated. We highlight the differences between phase and phase-amplitude descriptions, and show that the former can miss some substantial features of neuronal response. Finally, we discuss extensions of this work that will allow for the description of networks of limit-cycle oscillators and improve upon the standard weakly coupled phase oscillator approach. In particular, we highlight the merits of piece-wise linear modelling for the development of a theory of strongly interacting systems.

Authors’ Affiliations

University of Nottingham


  1. Kuramoto Y: Chemical Oscillations, Waves and Turbulence. 1984, Springer-VerlagView ArticleGoogle Scholar
  2. Hale JK: Ordinary Differential Equations. 1969, John Wiley and Sons, Inc.Google Scholar


© Wedgwood et al; licensee BioMed Central Ltd. 2011

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.