Skip to main content

Advertisement

Matching synaptic type with postsynaptic firing class shapes the encoding of either stimulus rate or rate change

Article metrics

  • 1104 Accesses

The synergy between synaptic and postsynaptic firing dynamics in shaping neuronal encoding has not been explored. We show that by matching short-term synaptic dynamics with postsynaptic firing class, either stimulus rate or a rate change are encoded. The result may be relevant to understand the function of cortical microcircuits.

Short-term synaptic dynamics and firing dynamics of neurons can each be classified into two types. In short-term plasticity, type 1 synapses show release-dependent depression and constant rate of recovery. They appear to encode a stimulus rate change. Type 2 synapses show release-independent depression and faster recovery at higher stimulus frequencies. They can follow the stimulus rate [1]. Postsynaptic firing characteristics conform either to class 1 or 2 on the basis of phase-reset curves (PRCs) [2]. Class 1 neurons can fire at arbitrarily low frequencies and do not exhibit spike frequency adaptation. Class 2 neurons exhibit subthreshold oscillations and spike frequency adaption.

We investigate if different combinations of synaptic and postsynaptic dynamics can shape neuronal encoding.

Using NEURON, we simulated biophysically realistic cells with class 1 or 2 firing dynamics [3] that receive 2000 unsynchronized type 1 or 2 synaptic inputs [1]. When class 1 neurons are matched with type 2 synaptic inputs the average synaptic stimulus rate is encoded in the firing rate (Fig. 1A,1B). When class 2 neurons and type 1 inputs are matched, the rate change but not its magnitude is encoded (Fig. 1C ,1D). For unmatched cases, rate and rate change are encoded to different extents (Fig. 1E-1H), suggesting both synaptic and postsynaptic dynamics shape encoding.

Figure 1
figure1

Spiking response when a class 1 neuron is matched with type 2 synaptic inputs (A,B) upon altering stimulus rate (below). Class 2 neuron matched with type 1 synaptic inputs (C,D). Class 1 neuron receiving type 1 synaptic inputs (unmatched; E,F). Class 2 neuron receiving type 2 synaptic inputs (unmatched; G,H). Average synaptic stimulus frequency altered for 400 ms from 10 to 30 Hz (A,C,E,G) and 10 to 40 Hz (B,D,F,H).

Spiny stellate cells in the layer IV microcircuit preferentially receive inputs from type 1 synapses while star pyramidal neurons receive type 2 inputs [4]. Even though the PRC for these cell types have not been characterized yet, our results pinpoint the possibility that in layer IV rate changes are encoded in the network of spiny stellate and stimulus rate in that of star pyramidal cells.

References

  1. 1.

    Fuhrmann G, Cowan A, Segev I, Tsodyks M, Stricker C: Multiple mechanisms govern the dynamics of depression at neocortical synapses of young rats. J Physiol. 2004, 557: 415-438. 10.1113/jphysiol.2003.058107.

  2. 2.

    Ermentrout B: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 1996, 8: 979-1001. 10.1162/neco.1996.8.5.979.

  3. 3.

    Stiefel KM, Gutkin BS, Sejnowski TJ: The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci. 2009, 26: 289-301. 10.1007/s10827-008-0111-9.

  4. 4.

    Cowan AI, Stricker C: Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. J Neurophysiol. 2004, 557: 415-438.

Download references

Acknowledgements

Mark D. McDonnell is supported by the Australian Research Council (grant DP1093425).

Author information

Correspondence to Ashutosh Mohan.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Rate Change
  • Synaptic Input
  • Spike Frequency
  • Stimulus Rate
  • Frequency Adaptation