- Poster presentation
- Open Access
Single cell dynamics determine strength of chaos in collective network dynamics
- Michael Monteforte1, 2Email author and
- Fred Wolf2
https://doi.org/10.1186/1471-2202-12-S1-P225
© Monteforte and Wolf; licensee BioMed Central Ltd. 2011
- Published: 18 July 2011
Keywords
- Lyapunov Exponent
- Chaotic Dynamic
- Network Dynamic
- Balance State
- Neuron Model
Cortical neurons have been found to exhibit a much higher action potential (AP) onset rapidness than expected from standard biophysical neuron models [1]. This has raised fundamental physiological questions about the origin of this phenomenon [1, 2]. An important issue for the understanding of information processing in the cortex is the impact of rapid AP initiation on the collective dynamics of cortical networks. Here, we report that it in fact strongly reduces the information loss in chaotic cortical networks.
As a model of cortical networks, we analyzed spiking neuron networks in the balanced state [3]. The balanced state provides an explanation of the temporally irregular activity of cortical networks observed in vivo[4]. In this state neurons are driven by large input fluctuations, resulting from a dynamical balance of excitation and inhibition.
Networks of theta neurons in the balanced state exhibit strongly chaotic dynamics [5]. We recently performed an exact analysis of the full spectra of Lyapunov exponents in such networks, revealing that deterministic chaos is extensive and information is lost at strikingly high rates of up to 1 bit per spike per neuron. The theta neuron model, however, shares the relatively low AP onset rapidness of other biophysical standard neuron models.
Largest Lyapunov exponent (A) and rate of information loss (B) versus AP onset rapidness in balanced networks of rapid theta neurons at three different average firing rates 1,5 and 10Hz.
These results reveal that the action potential rapidness of single neurons plays an important role in the collective dynamics of cortical networks. A rapid AP initiation reduces the information loss due to the chaotic dynamics. Our results thus suggest that cortical neurons may have evolved their rapid AP initiation in order to reduce the information loss in chaotic cortical networks and tune the network dynamics towards the edge of chaos.
Authors’ Affiliations
References
- Naundorf B, Wolf F, Volgushev M: Unique features of action potential initiation in cortical neurons. Nature. 2006, 440: 1060-1063. 10.1038/nature04610.View ArticlePubMedGoogle Scholar
- McCormick DA, Shu Y, Yu Y: Hodgkin and Huxley model — still standing?. Nature. 2006, 445: E1-E2. 10.1038/nature05523. and the reply Naundorf B, Wolf F, Volgushev M, Nature 2006, 445:E2-E3View ArticleGoogle Scholar
- Van Vreeswijk C, Sompolinsky H: Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity. Science. 1996, 274: 1724-1726. 10.1126/science.274.5293.1724.View ArticlePubMedGoogle Scholar
- Softky WR, Koch C: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience. 1993, 13 (1): 334-350.PubMedGoogle Scholar
- Monteforte M, Wolf F: Dynamical entropy production in spiking neuron networks in the balanced state. Physical Review Letters. 2010, 105 (26): 268104-268108. 10.1103/PhysRevLett.105.268104.View ArticlePubMedGoogle Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.