Skip to main content
Help us understand how you use our websites. Take part in our 30 minute study now.

Short term plasticity within the basal ganglia - a systems level computational investigation

Striatal direct pathway medium spiny neurons (MSNs) converge, with inhibitory synapses onto output nuclei substantia nigra reticulata (SNr), which keep neurons in the thalamus, superior colliculus and pendunculopontine nuclei under tonic inhibition [1]. Recent experimental findings [2] have found short term facilitation in MSN synapses onto SNr neurons. We investigate the functional consequences of these findings using a basal ganglia system level model, with spiking MSNs modeled according to Izhikevich’s simple model [3] and with facilitating synapses [4] fitted to data in [2]. The model is implemented in the NEST [5] simulator. We quantify how striatal populations of MSNs can control activity in SNr neurons, and to what extent this depends on having weak static, strong static and facilitating synapses between MSNs and SNr neurons.

Our simulation experiments predict that facilitating synapses allow baseline firing of presynaptic MSNs without suppressing target SNr neurons, while burst activation of only a few of these presynaptic striatal neurons can suppress the activity of one SNr neuron. This is in accordance with extracellular recordings in awake animals [6], where task dependent activity is transferred from a broad striatal population to a smaller subpopulation, responding increasingly stronger during learning of a task dependent behavior.

References

  1. 1.

    Beckstead RM, Domesick VB, Nauta WJ: Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain research. 1979, 175: 191-217. 10.1016/0006-8993(79)91001-1.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Connelly WM, Schulz JM, Lees G, Reynolds JNJ: Differential Short-Term Plasticity at Convergent Inhibitory Synapses to the Substantia Nigra Pars Reticulata. Journal of Neuroscience. 2010, 30 (44): 14854-14861. 10.1523/JNEUROSCI.3895-10.2010.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Izhikevich EM: Dynamical systems in neuroscience: The geometry of excitability and bursting. 2007, The MIT press

    Google Scholar 

  4. 4.

    Tsodyks M, Uziel A, Markram H: Synchrony generation in recurrent networks with frequency-dependent synapses. The Journal of neuroscience. 2000, 20 (1): RC50.

    CAS  PubMed  Google Scholar 

  5. 5.

    NEST simulator. [http://www.nest-initiative.org]

  6. 6.

    Barnes TD, Kubota Y, Hu D, Jin DZ, Graybiel AM: Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature. 2005, 437 (7062): 1158-61. 10.1038/nature04053.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mikael Lindahl.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Lindahl, M., Kotaleski, J.H. Short term plasticity within the basal ganglia - a systems level computational investigation. BMC Neurosci 12, P145 (2011). https://doi.org/10.1186/1471-2202-12-S1-P145

Download citation

Keywords

  • Basal Ganglion
  • Superior Colliculus
  • Striatal Neuron
  • Inhibitory Synapse
  • Extracellular Recording