- Poster Presentation
- Open access
- Published:
Network model for visually mediated ciliary locomotion in Hermissenda
BMC Neuroscience volume 11, Article number: P59 (2010)
The overall goal of this study is to investigate the ways in which learning modifies behavior. A combination of computational and empirical studies is being used to address this issue. Empirical studies investigate learning from a cellular and synaptic perspective in the relatively simple nervous system of the nudibranch mollusk Hermissenda[1–3]. Pavlovian conditioning produces light-elicited inhibition of normal positive phototaxis in Hermissenda. Learning changes both cellular excitability and synaptic strength in the neural circuit that supports phototaxis. In the present study, a model of the circuit that supports visually mediated locomotion (Fig. 1A) was developed. Consistent with empirical observations, simulated responses to light increased the level of VP1 spike activity (Fig. 1B1), which is equivalent to positive phototaxis. Simulations indicated that phototaxis resulted from disinhibition of VP1. Light increased activity in Ie and decreased activity in Ii (Fig. 1B2). The net result was less activity in IIIi and disinhibition of VP1 (Fig. 1B2). Simulations also indicated that disinhibition produced phototaxis only if VP1 had a high level of tonic firing. The model is being refined and expanded, and will be used to investigate the generation of other behaviors (e.g., foot contraction), the responses to other sensory inputs (e.g., gravity), and the influence of learning-induced plasticity (e.g., increased Ie excitability and decreased VP1 tonic firing). Simulations also will help identify features of the model that warrant further empirical investigation.
References
Crow T: Pavlovian conditioning of Hermissenda: Current cellular, molecular, and circuit perspectives. Learn Mem. 2004, 11: 229-238. 10.1101/lm.70704.
Crow T, Tian L-M: Pavlovian conditioning in Hermissenda: A circuit analysis. Biol Bull. 2006, 210: 289-297. 10.2307/4134565.
Crow T, Tian L-M: Neural correlates of Pavlovian conditioning in components of the neural network supporting ciliary locomotion in Hermissenda. Learn Mem. 2003, 10: 209-216. 10.1101/lm.58603.
Baxter DA, Byrne JH: Simulator for neural networks and action potentials. Methods Mol Biol. 2007, 401 (z): 127-154. (SNNAP is available at http://www.snnap.uth.tmc.edu)
Acknowledgements
This work was supported by NIH grants P01 NS038310 and R01 MH058698.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Baxter, D.A., Crow, T. Network model for visually mediated ciliary locomotion in Hermissenda. BMC Neurosci 11 (Suppl 1), P59 (2010). https://doi.org/10.1186/1471-2202-11-S1-P59
Published:
DOI: https://doi.org/10.1186/1471-2202-11-S1-P59