- Poster Presentation
- Open access
- Published:
Zero-lag long-range synchronization via hippocampal dynamical relaying
BMC Neuroscience volume 11, Article number: P17 (2010)
Oscillations of cortical areas in gamma frequencies has been extensively studied, however, distant cortical areas are able to synchronize in other ranges besides the gamma band. Local field potentials recorded from the frontal (F) and visual (V) cortical areas of a rat performing exploratory motor behavior (active state) and motor quiescent (passive state) present distinct features concerning to the zero-lag synchronization of the two cortical regions.
In this work, we study the occurrence of zero-lag synchronization of distant cortical areas in the theta band mediated by the hippocampus (H). We propose to model the different behavioral states (passive and active) with the dynamical relaying mechanism [1–3]. The model shows good agreement with the experiment as displayed in Fig. 1, for the density of peaks obtained from the sliding window of the filtered average membrane potential cross-correlograms.
Conclusions
During the active state visual and frontal areas activate more coherently when compared to the passive state, as can be seen from a higher peak in the cross-correlogram shown in figure 1. The theta band synchronization of neuronal activity in the frontal and visual cortical regions can be explained by the dynamical relaying phenomenon in which the hippocampus is assumed to play the role of the mediating element.
References
Fischer I, Vicente R, Buldu JM, Peil M, Mirasso CR, Torrent MC, Garcia-Ojalvo J: Zero-lag long-range synchronization via dynamical relaying. Physical Review Letters. 2006, 97: 123902-10.1103/PhysRevLett.97.123902.
Vicente R, Gollo LL, Mirasso CR, Fischer I, Pipa G: Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc Natl Acad Sci U S A. 2008, 105: 17157-17162. 10.1073/pnas.0809353105.
Gollo LL, Mirasso CR, Villa AE: Dynamic control for synchronization of separated cortical areas through thalamic relay. NeuroImage.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Gollo, L.L., Mirasso, C.R., Atienza, M. et al. Zero-lag long-range synchronization via hippocampal dynamical relaying. BMC Neurosci 11 (Suppl 1), P17 (2010). https://doi.org/10.1186/1471-2202-11-S1-P17
Published:
DOI: https://doi.org/10.1186/1471-2202-11-S1-P17