Karns CM, Knight RT: Intermodal Auditory, Visual, and Tactile Attention Modulates Early Stages of Neural Processing. Journal of Cognitive Neuroscience. 2009, 21 (4): 669-683. 10.1162/jocn.2009.21037.
Article
PubMed Central
PubMed
Google Scholar
Roelfsema PR, Lamme VAF, Spekreijse H: Object-based attention in the primary visual cortex of the macaque monkey. Nature. 1998, 395 (6700): 376-381. 10.1038/26475.
Article
CAS
PubMed
Google Scholar
Lamme VAF, Roelfsema PR: The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences. 2000, 23 (11): 571-10.1016/S0166-2236(00)01657-X.
Article
CAS
PubMed
Google Scholar
Reynolds JH, Chelazzi L, Desimone R: Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4. J Neurosci. 1999, 19 (5): 1736-1753.
CAS
PubMed
Google Scholar
Wurtz RH, Mohler CW: Enhancement of visual responses in monkey striate cortex and frontal eye fields. J Neurophysiol. 1976, 39: 766-772.
CAS
PubMed
Google Scholar
Yoshor D, Ghose G, Bosking W, Sun P, Maunsell J: Spatial Attention Does Not Strongly Modulate Neuronal Responses in Early Human Visual Cortex. J Neurosci. 2007, 27 (48): 13209-10.1523/JNEUROSCI.2944-07.2007.
Article
Google Scholar
Mehta AD, Ulbert I, Schroeder CE: Intermodal Selective Attention in Monkeys. II: Physiological Mechanisms of Modulation. Cereb Cortex. 2000, 10 (4): 359-370. 10.1093/cercor/10.4.359.
Article
CAS
PubMed
Google Scholar
Martínez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA: Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience. 1999, 2: 364-369. 10.1038/7274.
Article
PubMed
Google Scholar
Di Russo F, Martinez A, Hillyard SA: Source Analysis of Event-related Cortical Activity during Visuo-spatial Attention. Cereb Cortex. 2003, 13 (5): 486-499. 10.1093/cercor/13.5.486.
Article
PubMed
Google Scholar
Posner MI, Gilbert CD: Attention and primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 1999, 96 (6): 2585-2587. 10.1073/pnas.96.6.2585.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pessoa L, Kastner S, Ungerleider LG: Neuroimaging Studies of Attention: From Modulation of Sensory Processing to Top-Down Control. J Neurosci. 2003, 23 (10): 3990-3998.
CAS
PubMed
Google Scholar
Noesselt T, Hillyard SA, Woldorff MG, Schoenfeld A, Hagner T, Jäncke L, Tempelmann C, Hinrichs H, Heinze HJ: Delayed striate cortical activation during spatial attention. Neuron. 2002, 1 ((35)3): 575-587. 10.1016/S0896-6273(02)00781-X.
Article
Google Scholar
Schoenfeld MA, Tempelmann C, Martinez A, Hopf JM, Sattler C, Heinze HJ, Hillyard SA: Dynamics of feature binding during object-selective attention. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100 (20): 11806-11811. 10.1073/pnas.1932820100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schoenfeld MA, Hopfinger JM, Martinez A, Mai HM, Sattler C, Gasde A, Heinze H, Hillyard SA: Spatio-temporal analysis of feature-based attention. Cereb Cortex. 2007, 2468-2477. 17
Pasqual-Marqui RD, Michel CM, Lehmann D: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. In J Psychophysiol. 1994, 18: 49-65. 10.1016/0167-8760(84)90014-X.
Article
Google Scholar
Kelly SP, Gomez-Ramirez M, Foxe JJ: Spatial Attention Modulates Initial Afferent Activity in Human Primary Visual Cortex. Cereb Cortex. 2008, 18 (11): 2629-2636. 10.1093/cercor/bhn022.
Article
PubMed Central
PubMed
Google Scholar
Ito M, Gilbert CD: Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys. Neuron. 1999, 22: 593-604. 10.1016/S0896-6273(00)80713-8.
Article
CAS
PubMed
Google Scholar
Harter MR, Previc FH: Size-specific information channels and selective attention: visual evoked potential and behavioral measures. Electroencephalogr Clin Neurophysiol. 1978, 45 (5): 628-640. 10.1016/0013-4694(78)90163-3.
Article
CAS
PubMed
Google Scholar
Baas JMP, Kenemans JL, Mangun GR: Selective attention to spatial frequency: an ERP and source localization analysis. Clinical Neurophysiology. 2002, 113 (11): 1840-10.1016/S1388-2457(02)00269-9.
Article
PubMed
Google Scholar
Kenemans JL, Lijffijt M, Camfferman G, Verbaten MN: Split-Second Sequential Selective Activation in Human Secondary Visual Cortex. Journal of Cognitive Neuroscience. 2002, 14 (1): 48-10.1162/089892902317205311.
Article
PubMed
Google Scholar
Kenemans JL, Kok A, Smulders FT: Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response. Electroencephalogr Clin Neurophysiol. 1993, 88: 51-63. 10.1016/0168-5597(93)90028-N.
Article
CAS
PubMed
Google Scholar
Martínez A, Di Russo F, Anllo-Vento L, Hillyard SA: Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies. Clinical Neurophysiology. 2001, 112 (11): 1980-10.1016/S1388-2457(01)00660-5.
Article
PubMed
Google Scholar
Anllo-Vento L, Luck SJ, Hillyard SA: Spatio-temporal dynamics of attention to color: evidence from human electrophysiology. Hum Brain Mapp. 1998, 216-238. 10.1002/(SICI)1097-0193(1998)6:4<216::AID-HBM3>3.0.CO;2-6. 6
Valdes-Sosa M, Bobes MA, Rodriguez V, Pinilla T: Switching Attention without Shifting the Spotlight: Object-Based Attentional Modulation of Brain Potentials. Journal of Cognitive Neuroscience. 1998, 10 (1): 137-10.1162/089892998563743.
Article
CAS
PubMed
Google Scholar
Zani A, Proverbio AM: ERP signs of early selective attention effects to check size. Electroencephalogr Clin Neurophysiol. 1995, 95 (4): 277-292. 10.1016/0013-4694(95)00078-D.
Article
CAS
PubMed
Google Scholar
Zani A, Proverbio AM: Attention modulation of short latency ERPs by selective attention to conjunction of spatial frequency and location. J Psychophysiol. 1997, 11: 21-32.
Google Scholar
Zani A, Proverbio AM, Laurent I, Geraint R, John KT: The Timing of Attentional Modulation of Visual Processing as Indexed by ERPs. Neurobiology of Attention. 2005, Burlington: Academic Press, 514-full_text.
Chapter
Google Scholar
Khoe W, Mitchell JF, Reynolds JH, Hillyard SA: Exogenous attentional selection of transparent superimposed surfaces modulates early event-related potentials. Vision Research. 2005, 45: 3004-3014. 10.1016/j.visres.2005.04.021.
Article
CAS
PubMed
Google Scholar
Proverbio AM, Esposito P, Zani A: Early involvement of the temporal area in attentional selection of grating orientation: an ERP study. Cognitive Brain Research. 2002, 13 (1): 139-151. 10.1016/S0926-6410(01)00103-3.
Article
PubMed
Google Scholar
Zani A, Proverbio AM: ERP signs of frontal and occipital processing of visual targets and distracters within and without the channel of spatial attention. Focus on Neuropsychology Research. Edited by: Dupri JR. 2006, 38-88.
Google Scholar
Zani A, Proverbio AM: Selective attention to spatial frequency gratings affects visual processing as early as 60 msec. poststimulus. Percept Mot Skills. 2009, 109 (1): 140-158.
Article
PubMed
Google Scholar
Proverbio AM, Del Zotto M, Zani A: Inter-individual differences in the polarity of early visual responses and attention effects. Neuroscience Letters. 2007, 419 (2): 131-136. 10.1016/j.neulet.2007.04.048.
Article
CAS
PubMed
Google Scholar
Foxe J, Strugstad E, Sehatpour P, Molholm S, Pasieka W, Schroeder C, McCourt M: Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked Potential: High-Density Electrical Mapping of the "C1" Component. Brain Topography. 2008, 21 (1): 11-21. 10.1007/s10548-008-0063-4.
Article
PubMed
Google Scholar
Zanow F, Knösche TR: ASA-Advanced Source Analysis of Continuous and Event-Related EEG/MEG Signals. Brain Topography. 2004, 16 (4): 287-10.1023/B:BRAT.0000032867.41555.d0.
Article
PubMed
Google Scholar
Palmero-Soler E, Dolan K, Hadamschek V, Tass PA: swLORETA: a novel approach to robust source localization and synchronization tomography. Physics in medicine and biology. 2007, 52: 1783-1800. 10.1088/0031-9155/52/7/002.
Article
PubMed
Google Scholar
Kenemans JL, Baas JMP, Mangun GR, Lijffijt M, Verbaten MN: On the processing of spatial frequencies as revealed by evoked-potential source modeling. Clinical Neurophysiology. 2000, 111 (6): 1113-10.1016/S1388-2457(00)00270-4.
Article
CAS
PubMed
Google Scholar
Proverbio AM, Zani A, Avella C: Differential activation of multiple current sources of foveal VEPs as a function of spatial frequency. Brain Topography. 1996, 9 (1): 59-63. 10.1007/BF01191643.
Article
Google Scholar
Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA: Cortical sources of the early components of the visual evoked potential. Human Brain Mapping. 2002, 15 (2): 95-111. 10.1002/hbm.10010.
Article
PubMed
Google Scholar
Im CH, Gururajan A, Zhang N, Chen W, He B: Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex. Journal of Neuroscience Methods. 2007, 161 (1): 142-154. 10.1016/j.jneumeth.2006.10.008.
Article
PubMed Central
PubMed
Google Scholar
Chang-Hwan I, Arvind G, Nanyin Z, Wei C, Bin H: Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex. Journal of Neuroscience Methods. 2007, 161 (1): 142-154. 10.1016/j.jneumeth.2006.10.008.
Article
Google Scholar
Jeffreys DA, Axford JG: Source locations of pattern-specific component of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res. 1972, 16: 1-21.
CAS
PubMed
Google Scholar
Regan D: Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. 1989
Google Scholar
Clark VP, Fan S, Hillyard SA: Identification of early visually evoked potential generators by retinotopic and topographic analysis. Hum Brain Mapp. 1995, 2: 170-187. 10.1002/hbm.460020306.
Article
Google Scholar
Bodis-Wollner I, Brannan JR, Nicoll J, Frkovic S, Mylin LH: A short latency cortical component of the foveal VEP is revealed by hemifield stimulation. Electroencephalogr Clin Neurophysiol. 1992, 84: 201-208. 10.1016/0168-5597(92)90001-R.
Article
CAS
PubMed
Google Scholar
Kitterle FL, Selig LM: Visual field effects in the discrimination of sine-wave gratings. Percept Psychophys. 1991, 50 (1): 15-18.
Article
CAS
PubMed
Google Scholar
Proverbio AM, Zani A, Avella C: Hemispheric Asymmetries for Spatial Frequency Discrimination in a Selective Attention Task. Brain and Cognition. 1997, 34 (2): 311-320. 10.1006/brcg.1997.0901.
Article
CAS
PubMed
Google Scholar
Rebai M, Mecacci L, Bagot JD, Bonnet C: Influence of spatial frequency and handedness on hemispheric asymmetry in visually steady-state evoked potentials. Neuropsychologia. 1989, 27 (3): 315-324. 10.1016/0028-3932(89)90021-3.
Article
CAS
PubMed
Google Scholar
Marzi CA, Bisiacchi P, Nicoletti R: Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia. 1991, 29 (12): 1163-1177. 10.1016/0028-3932(91)90031-3.
Article
CAS
PubMed
Google Scholar
DeValois RL, Albrecht DG, Thorel LG: Spatial frequency selectivity of cells in the macaque visual cortex. Vision Research. 1982, 22: 545-559. 10.1016/0042-6989(82)90113-4.
Article
CAS
Google Scholar
Tootell RB, Silverman MS, Hamilton SL, Switkes E, De Valois RL: Functional anatomy of macaque striate cortex. V. Spatial frequency. J Neurosci. 1988, 8 (5): 1610-1624.
CAS
PubMed
Google Scholar
Carrasco M, Martinez-Conde S, Macknik SL, Martinez LM, Alonso JM, Tse PU: Covert attention increases contrast sensitivity: psychophysical, neurophysiological and neuroimaging studies. Progress in Brain Research. 2006, Elsevier, 154 (1): 33-70. full_text.
Yeshurun Y, Carrasco M: Attention improves or impairs visual performance by enhancing spatial resolution. Nature. 1998, 396 (6706): 72-75. 10.1038/23936.
Article
CAS
PubMed
Google Scholar
Sartucci F, Tagliati M, Mylin LH, I BW: Topographical analysis of the onset VEP in the detection of paracental visual field defects. Clinical Electroencephalography. 2002, 33: 62-68.
Article
PubMed
Google Scholar
Aine CJ, I BW, JS G: Generators of visually evoked neuromagnetic responses. Spatial-frequency segregation and evidence for multiple sources. Advances in Neurology, Magnetoencephalography. Edited by: Sato S. 1990, New York: Raven Press, 54: 141-l55.
Google Scholar
Aine CJ, M SJ: MEG studies of visual processing. "The cognitive electrophysiology of mind and brain". Edited by: Zani A, Proverbio AM. 2003, Academic Press/Elsevier, 93-l42. full_text.
Chapter
Google Scholar
Foxe JJ, Simpson GV: Flow of activation from V1 to frontal cortex in humans. A framework for defining "early" visual processing. Exp Brain Res. 2002, 142 (1): 139-150. 10.1007/s00221-001-0906-7.
Article
PubMed
Google Scholar
Umeno MM, Goldberg ME: Spatial Processing in the Monkey Frontal Eye Field. I. Predictive Visual Responses. J Neurophysiol. 1997, 78: 1373-1383.
CAS
PubMed
Google Scholar
Wurtz R, Sommer M: Identifying corollary discharges for movement in the primate brain. Prog Brain Res. 2004, 144: 47-60. full_text.
Article
PubMed
Google Scholar
Silvanto J, Lavie N, V W: Stimulation of the Human Frontal Eye Fields Modulates Sensitivity of Extrastriate Visual Cortex. J Neurophysiol. 2006, 96 (2): 941-945. 10.1152/jn.00015.2006.
Article
PubMed
Google Scholar
Taylor PCJ, Nobre AC, MFS R: FEF TMS Affects Visual Cortical Activity. Cereb Cortex. 2007, 17 (2): 391-399. 10.1093/cercor/bhj156.
Article
PubMed
Google Scholar
Kalla R, Muggleton NG, Cowey A, V W: Human dorsolateral prefrontal cortex is involved in visual search for conjunctions but not features: A theta TMS study. Cortex. 2009, 45 (9): 1085-1090. 10.1016/j.cortex.2009.01.005.
Article
PubMed
Google Scholar
Amassian V, Mari Z, Sagliocco L, Hassan N, Maccabee P, Cracco J, Cracco R, Bodis-Wollner I: Perception of phosphenes and flashed alphabetical characters is enhanced by single-pulse transcranial magnetic stimulation of anterior frontal lobe: The thalamic gate hypothesis. Perception. 2008, 37: 375-388. 10.1068/p5948.
Article
PubMed
Google Scholar
Tzelepi A, Bezerianos TI: B-W: Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man. Clinical Neurophysiology. 2000, 111: 259-269. 10.1016/S1388-2457(99)00248-5.
Article
CAS
PubMed
Google Scholar
Bodis-Wollner I, J D, A T, T B: Wavelet transform of the EEG reveals difference in low and high gamma responses to elementary visual stimuli. Clinical Electroencephalography. 2001, 32: 139-144.
Article
CAS
PubMed
Google Scholar