Skip to main content
  • Oral presentation
  • Open access
  • Published:

Chronux: a platform for analyzing neural signals

Neuroscientists are increasingly gathering large time series data sets in the form of multichannel electrophysiological recordings, EEG, MEG, fMRI and optical image time series. The availability of such data has brought with it new challenges for analysis and has created a pressing need for the development of software tools for storing and analyzing neural signals. In fact, while sophisticated methods for analyzing multichannel time series have been developed over the past several decades in statistics and signal processing, the lack of a unified, user-friendly platform that implements these methods is a critical bottleneck in mining large neuroscientific datasets.

Chronux http://www.chronux.org is an open source software initiative that aims to fill this void by providing a comprehensive software platform for the analysis of neural signals. It is a collaborative research effort currently based at Cold Spring Harbor Laboratory that has grown out of the work of several groups [1–5]. The current version of Chronux includes a Matlab toolbox for signal processing of neural time series data, several specialized mini-packages for spike sorting, local regression, audio segmentation and other data-analysis tasks typically encountered by a neuroscientist, and a user interface (UI) designed specifically for analysis of EEG data. The eventual goal is to provide domain specific UIs for each experimental modality, along with corresponding data management tools. In particular, we expect Chronux to support analysis of time series data from most of the standard data acquisition modalities in use in neuroscience. We also expect it to grow in the types of analyses it implements. This talk provides an overview of the platform, emphasizing the spectral analysis toolbox and the EEG UI. We also illustrate the use of Chronux in selected recent publications.

References

  1. Mitra PP, Pesaran B: Analysis of dynamic brain imaging data. Biophysical Journal. 1999, 76: 691-708. 10.1016/S0006-3495(99)77236-X.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Fee MS, Mitra PP, Kleinfeld D: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-gaussian variability. J Neuroscience Methods. 1996, 69: 175-188. 10.1016/S0165-0270(96)00050-7.

    Article  CAS  Google Scholar 

  3. Bokil H, Pesaran B, Andersen RA, Mitra PP: A method for detection and classification of events in neural activity. IEEE Transactions on Biomedical Engineering. 2006, 53: 1678-1687. 10.1109/TBME.2006.877802.

    Article  PubMed  Google Scholar 

  4. Bokil H, Purpura K, Schofflen J-M, Thompson D, Pesaran B, Mitra PP: Comparing spectra and coherences for groups of unequal size. Journal of Neuroscience Methods. 2006, 159: 337-345. 10.1016/j.jneumeth.2006.07.011.

    Article  PubMed  Google Scholar 

  5. Mitra PP, Bokil H: Observed Brain Dynamics. 1998, New York: Oxford University Press

    Google Scholar 

Download references

Acknowledgments

The development of Chronux was supported in part by a grant from the NIH (5R01MH071744-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant S Bokil.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Bokil, H.S., Andrews, P., Maniar, H. et al. Chronux: a platform for analyzing neural signals. BMC Neurosci 10 (Suppl 1), S3 (2009). https://doi.org/10.1186/1471-2202-10-S1-S3

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/1471-2202-10-S1-S3

Keywords