Skip to main content
  • Oral presentation
  • Open access
  • Published:

FIND -- a unified framework for neural data analysis

The complexity of neurophysiology data has increased tremendously over the last years, especially due to the widespread availability of multi-channel recording techniques. With adequate computing power, the current limit for computational neuroscience is the effort and time it takes for scientists to translate their ideas into working code. Advanced analysis methods are complex and often lack reproducibility on the basis of published descriptions. To overcome this limitation we developed FIND (Finding Information in Neural Data; [1]) as a platform-independent, open-source framework for the analysis of neuronal activity data based on Matlab (Mathworks).

Here, we outline the structure of the FIND framework and describe its functionality, our measures of quality control, and the policies for developers and users [2]. Within FIND, we have developed a unified data import from various proprietary formats, simplifying standardized interfacing with tools for analysis and simulation. The toolbox FIND covers a steadily increasing number of tools. These analysis tools address various types of neural activity data, including discrete series of spike events, continuous time series and imaging data. Additionally, the toolbox provides solutions for the simulation of parallel stochastic point processes to model multi-channel spiking activity. We will illustrate the functioning of FIND by presenting examples of its application to different types of experimental data[3, 4], both from in vitro and in vivo recordings, and of recording data from simulated network models [5, 6].

References

  1. FIND - Finding Information in Neural Data. [http://find.bccn.uni-freiburg.de]

  2. Meier R, Egert U, Aertsen A, Nawrot MP: FIND - A unified framework for neural data analysis. Neural Networks. 2008, 21: 1085-1093. 10.1016/j.neunet.2008.06.019.

    Article  PubMed  Google Scholar 

  3. Boucsein C, Tetzlaff T, Meier R, Aertsen A, Naundorf B: Dynamical response properties of neocortical neuron ensembles: Multiplicative versus additive noise. J Neurosci. 2009, 29: 1006-1010. 10.1523/JNEUROSCI.3424-08.2009.

    Article  CAS  PubMed  Google Scholar 

  4. Nawrot MP, Schnepel P, Aertsen A, Boucsein C: Precisely timed signal transmission in neocortical networks with reliable intermediate-range projections. Frontiers in Neural Circuits. 2009, 3: 1-11. 10.3389/neuro.04.001.2009.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kumar A, Schrader S, Aertsen A, Rotter S: The high-conductance state of cortical networks. Neural Computation. 2008, 20: 1-43. 10.1162/neco.2008.20.1.1.

    Article  PubMed  Google Scholar 

  6. Kumar A, Rotter S, Aertsen A: Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. J Neurosci. 2008, 28: 5268-5280. 10.1523/JNEUROSCI.2542-07.2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The FIND framework is supported in parts by the German Federal Ministry of Education and Research (BMBF grant 01GQ0420 to the BCCN Freiburg and 01GQ0421 to Multi Channel Systems), and the 6th RFP of the EU (grant no. 15879-FACETS and 012788-NEURO). The contribution of M.N. is funded by the BMBF grant 01GQ0413 to BCCN Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ad Aertsen.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Aertsen, A., Garbers, C., Kilias, A. et al. FIND -- a unified framework for neural data analysis. BMC Neurosci 10 (Suppl 1), S1 (2009). https://doi.org/10.1186/1471-2202-10-S1-S1

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/1471-2202-10-S1-S1

Keywords