- Poster presentation
- Open access
- Published:
Links between complex spikes and multiple synaptic plasticity mechanisms in the cerebellar cortex
BMC Neuroscience volume 10, Article number: P326 (2009)
Introduction
In the classic cerebellar learning theory the climbing fiber (CF) is activated when the movement is inaccurate and this activation leads changes in the synaptic strength and in the Purkinje cell (PC) output [1, 2]. Stimulation of a single CF activates hundreds of synaptic contacts across PC dendrites and triggers a high frequency burst of spikes called complex spike (CS) [3]. However, it is still unclear how changes in the complex spike probability and the time interval between the parallel fiber (PF) and CF inputs will affect the PC single spike response and learning, considering multiple plasticity mechanisms present at PF and CF synapses [4]. In this work, we used a computational model for synaptic transmission to simulate both long-term and short-term plasticity [5, 6] and a single compartmental model of the PC [7] to investigate the links between CS probability, multiple plasticity mechanisms and changes in the PC output. The computational model includes the post-synaptic expression of long-term depression between CF and PC [8], long-term potentiation and depression between PF and PC [5] and short-term facilitation between PF and PC [6]. The models were based in previous models for synaptic transmission and were validated according to the available experimental data (Figure 1).
References
Marr D: Theory of cerebellar cortex. J Physiol (London). 1969, 202: 437-455.
Albus JS: A Theory of cerebellar function. Math Biosci. 1971, 10: 25-61. 10.1016/0025-5564(71)90051-4.
Jenny TD, Beverley AC, Hausser M: The origin of the complex spike. J Neurosci. 2008, 28: 7599-7609. 10.1523/JNEUROSCI.0559-08.2008.
Hansel C, Linden DJ, D'Angelo E: Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001, 4: 467-475.
Coesmans M, Weber JT, De Zeeuw CI, Hansel C: Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004, 44: 691-700. 10.1016/j.neuron.2004.10.031.
Goto JI, Inoue T, Kuruma A, Mikoshiba K: Short-term potentiation at the parallel fiber-Purkinje cell synapse. Neurosci Res. 2006, 55: 28-33. 10.1016/j.neures.2006.01.001.
Akemann W, Knopfel T: Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J Neurosci. 2006, 26: 4602-4612. 10.1523/JNEUROSCI.5204-05.2006.
Hansel C, Linden DJ: Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron. 2000, 26: 473-482. 10.1016/S0896-6273(00)81179-4.
Empson RM, Garside ML, Knöpfel T: Plasma membrane Ca2+ ATPase 2 contributes to short-term synapse plasticity at the parallel fiber to purkinje neuron synapse. J Neurosci. 2008, 27: 3753-3758. 10.1523/JNEUROSCI.0069-07.2007.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Publio, R., De Schutter, E. Links between complex spikes and multiple synaptic plasticity mechanisms in the cerebellar cortex. BMC Neurosci 10 (Suppl 1), P326 (2009). https://doi.org/10.1186/1471-2202-10-S1-P326
Published:
DOI: https://doi.org/10.1186/1471-2202-10-S1-P326