Skip to main content
  • Poster presentation
  • Open access
  • Published:

Modeling the coupling of single neuron activity to local field potentials

This work presents a first step towards a modeling paradigm that enables to link mesoscopic neurodynamics with single-cell activity. A common approach to describe large-scale activity, such as local field potentials (LFP), is via the so called neural field equations [1, 2]. At the neuronal scale, spiking models, such the Hodgkin-Huxley [3] and leaky-integrate neurons, can be employed [4]. However, explaining the link between these levels of descriptions, which are ubiquitous for understanding the coupling of single unit activity to the electromagnetic mean-field, are still unresolved and very much a topic of intense debate and research. We approach this problem by developing a dynamic network model for the interaction of pyramidal and inhibitory cells by adding two observable equations to the dynamical evolution law of the network. One observable accounts for the intracellular activity (i.e. spiking activity) and the other one for LFP. In particular, the LFP observable is made possible by monitoring the evolution of the dipole dynamics of each pyramidal cell characterized by in-flow and out-flow of currents in the apical and basal dendrites. In addition, following [5], we link single cell activity and their electrotonic properties to mesoscopic neurodynamics and their corresponding parameters by deriving an equivalent Amari neural field equation with mean-field coupling [6]. We also show the validity of this approach by large-scale computations for various connectivity topologies and demonstrate how this description could further our understanding of LFP.


  1. Amari SI: Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics. 1997, 27: 77-87. 10.1007/BF00337259.

    Article  Google Scholar 

  2. Abbott LF: Lapique's introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin. 1999, 50: 303-304. 10.1016/S0361-9230(99)00161-6.

    Article  CAS  PubMed  Google Scholar 

  3. beim Graben P, Kurths J: Simulating global properties of electroencephalograms with minimal random neural networks. Neurocomputing. 2008, 71: 999-1007. 10.1016/j.neucom.2007.02.007.

    Article  Google Scholar 

  4. Hodgkin A, Huxley A: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiology. 1952, 117: 500-544.

    Article  CAS  Google Scholar 

  5. Richardson KA, Schiff SJ, Gluckman BJ: Control of traveling waves in the mammalian cortex. Physical Review Letters. 2005, 94: 028103-10.1103/PhysRevLett.94.028103.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wilson HR, Cowan JD: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973, 13: 55-80. 10.1007/BF00288786.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Serafim Rodrigues.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Rodrigues, S., Graben, P.b. Modeling the coupling of single neuron activity to local field potentials. BMC Neurosci 10 (Suppl 1), P291 (2009).

Download citation

  • Published:

  • DOI: