- Poster presentation
- Open access
- Published:
Detection of task-related synchronous firing patterns
BMC Neuroscience volume 10, Article number: P262 (2009)
Background
To test the importance of synchronous neuronal firing for information processing in the brain, one has to investigate if synchronous firing strength is correlated to the experimental subjects. This requires a tool that can compare the strength of the synchronous firing across different conditions, while at the same time it should correct for other features of neuronal firing such as spike rate modulation or the auto-structure of the spike trains that might co-occur with synchronous firing. Here we present the bi- and multivariate extension of previously developed method NeuroXidence [1, 2], which allows for comparing the amount of synchronous firing between different conditions.
Methods
In order to eliminate the effect that spike rate changes may bring to the precise synchronous firing patterns, we define two time scales, τc and τr, to distinguish the joint-spike-event (JSE) with rate modulation. The assumed temporal extension of JSE is denoted by τc (~5 ms), while the lower bound of rate changes is denoted by τr, which is η times slower than τc (τr = η*τc, usually η = 5). Surrogate data is then generated by jittering each spike train by an amount smaller than τr, which only destroys the fine temporal cross-structure and keeps other features of the spike train. Hence, for each trial (m), each joint-spike pattern (k) and each condition (i), the change amount of JSE (Δfm, k, i) is derived based on the difference between original and surrogate data sets. Thus, from all the trials, the change amount of JSE for each joint-spike pattern and each condition assembles the set ΔFk, i. To assess whether ΔFk, iis different across conditions, bi- and multivariate statistical test (Mann-whitney, Kruskawalis) are applied.
Results
Based on different simulated data sets, we demonstrate the bi- and multivariate NeuroXidence is a reliable and robust method for detecting modulations of synchronous firing across different conditions. To this end, we calibrated our method on various scenarios (such as fast rate change, rate co-variation, low rate and different forms of renewal processes), which have been discussed to induce false positives. Moreover, after applying our method to the simultaneous recordings from awake monkeys in a short-term memory task, we exhibit that the encoding and maintenance of information in the brain rely on the formation of neuronal assemblies characterized by precise and reliable synchronization of spiking activity on a millisecond time scale.
References
Pipa G, Riehle A, Grün S: Validation of task-related excess of spike coincidences based on NeuroXidence. Neurocomputing. 2007, 70: 2064-2068. 10.1016/j.neucom.2006.10.142.
Pipa G, Wheeler DW, Singer W, Nikolic D: NeuroXidence: A non-parametric test on excess or deficiency of joint-spike events. J Comput Neurosci. 2008, 25: 64-88. 10.1007/s10827-007-0065-3.
Acknowledgements
This work was supported by the Hertie foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Wu, W., Pipa, G. Detection of task-related synchronous firing patterns. BMC Neurosci 10 (Suppl 1), P262 (2009). https://doi.org/10.1186/1471-2202-10-S1-P262
Published:
DOI: https://doi.org/10.1186/1471-2202-10-S1-P262