- Poster presentation
- Open access
- Published:
Mathematical modeling of the Drosophila neuromuscular junction
BMC Neuroscience volume 10, Article number: P196 (2009)
An important challenge in neuroscience is understanding how networks of neurons go about processing information. Synapses are thought to play an essential role in cellular information processing however quantitative and mathematical models of the underlying physiologic processes that occur at synaptic active zones are lacking. We are generating mathematical models of synaptic vesicle dynamics at a well-characterized model synapse, the Drosophila larval neuromuscular junction. This synapse's simplicity, accessibility to various electrophysiological recording and imaging techniques, and the genetic malleability intrinsic to Drosophila system make it ideal for computational and mathematical studies.
We have employed a reductionist approach and started by modeling single presynaptic boutons. Synaptic vesicles can be divided into different pools; however, a quantitative understanding of their dynamics at the Drosophila neuromuscular junction is lacking [4]. We performed biologically realistic simulations of high and low release probability boutons [3] using partial differential equations (PDE) taking into account not only the evolution in time but also the spatial structure in two dimensions (the extension to three dimensions will be implemented soon). PDEs are solved using UG, a program library for the calculation of multi-dimensional PDEs solved using a finite volume approach and implicit time stepping methods leading to extended linear equation systems be solvedwith multi-grid methods [3, 4]. Numerical calculations are done on multi-processor computers for fast calculations using different parameters in order to asses the biological feasibility of different models. In preliminary simulations, we modeled vesicle dynamics as a diffusion process describing exocytosis as Neumann streams at synaptic active zones. The initial results obtained with these models are consistent with experimental data. However, this should be regarded as a work in progress. Further refinements will be implemented, including simulations using morphologically realistic geometries which were generated from confocal scans of the neuromuscular junction using NeuRA (a Neuron Reconstruction Algorithm). Other parameters such as glutamate diffusion and reuptake dynamics, as well as postsynaptic receptor kinetics will be incorporated as well.
References
Rizzoli S, Betz W: Synaptic vesicle pools. Nature Rev Neurosci. 2005, 6: 57-69. 10.1038/nrn1583.
Lnenicka G, Keshishian H: Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J Neurobiol. 2000, 43: 186-197. 10.1002/(SICI)1097-4695(200005)43:2<186::AID-NEU8>3.0.CO;2-N.
Bastian P, Birken K, Johannsen K, Lang S, Neuss N, Rentz-Reichert H, Wieners C: UG – A flexible software toolbox for solving partial differential equations. Computing and Visualization in Science. 1997, 1: 27-40. 10.1007/s007910050003.
Bastian P, Birken K, Johannsen K, Lang S, Reichenberger V, Wieners C, Wittum G, Wrobel C: A parallel software-platform for solving problems of partial differential equations using unstructured grids and adaptive multigrid methods. High performance computing in science and engineering. Edited by: Jager W, Krause E. 1999, Springer, 326-339.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Knodel, M.M., Bucher, D.B., Queisser, G. et al. Mathematical modeling of the Drosophila neuromuscular junction. BMC Neurosci 10 (Suppl 1), P196 (2009). https://doi.org/10.1186/1471-2202-10-S1-P196
Published:
DOI: https://doi.org/10.1186/1471-2202-10-S1-P196