Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW: Aggregation and motorneuron toxicity of an ALS-linked SOD1 mutant independent from wildtype SOD1. Science. 1998, 281: 1851-1854. 10.1126/science.281.5384.1851.
Article
CAS
PubMed
Google Scholar
Rowland LP, Shneider NA: Amyotrophic Lateral Sclerosis. N Engl J Med. 2001, 344: 1688-1700. 10.1056/NEJM200105313442207.
Article
CAS
PubMed
Google Scholar
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993, 362: 59-62. 10.1038/362059a0.
Article
CAS
PubMed
Google Scholar
Rosen DR, Bowling AC, Patterson D, Usdin TB, Sapp P, Mezey E, McKenna-Yasek D, O'Regan J, Rahmani Z, Ferrante RJ, et al.: A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. Hum Mol Genet. 1994, 3: 981-7. 10.1093/hmg/3.6.981.
Article
CAS
PubMed
Google Scholar
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng H-X, Chen W, Zhai P, Sufit RL, Siddique T: Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase. Science. 1994, 264: 1772-1775. 10.1126/science.8209258.
Article
CAS
PubMed
Google Scholar
Carri MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G: Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett. 1997, 414: 365-8. 10.1016/S0014-5793(97)01051-X.
Article
CAS
PubMed
Google Scholar
Andersen PM, Sims KB, Xin WW, Kiely R, O'Neill G, Ravits J, Pioro E, Harati Y, Brower RD, Levine JS, Heinicke HU, Seltzer W, Boss M, Brown RH: Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries defects and disputes. Amyotroph Lateral. Scler Other Motor Neuron Disord. 2003, 4: 62-73. 10.1080/14660820310011700.
Article
CAS
PubMed
Google Scholar
Bowling AC, Schulz JB, Brown RH, Beal MF: Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem. 1993, 61: 2322-5. 10.1111/j.1471-4159.1993.tb07478.x.
Article
CAS
PubMed
Google Scholar
Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL: An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995, 14: 1105-16. 10.1016/0896-6273(95)90259-7.
Article
CAS
PubMed
Google Scholar
Sasaki S, Iwata M: Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett. 1996, 204: 53-6. 10.1016/0304-3940(96)12314-4.
Article
CAS
PubMed
Google Scholar
Sasaki S, Iwata M: Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology. 1996, 47: 535-540.
Article
CAS
PubMed
Google Scholar
Kong J, Xu Z: Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci. 1998, 18: 3241-50.
CAS
PubMed
Google Scholar
Jaarsma D, Rognoni F, Duijn WV, Verspaget HW, Haasdijk ED, Holstege JC: Cu-Zn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropath. 2001, 102: 293-305.
CAS
PubMed
Google Scholar
Menzies FM, Cookson MR, Taylor RW, Turnbull DM, Chrzanowska-Lightowlers ZM, Dong L, Figlewicz DA, Shaw PJ: Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain. 2002, 125: 1522-1533. 10.1093/brain/awf167.
Article
PubMed
Google Scholar
Menzies FM, Ince PG, Shaw PJ: Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem Inter. 2002, 40: 543-551. 10.1016/S0197-0186(01)00125-5.
Article
CAS
Google Scholar
Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS: Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci. 1998, 156: 65-72. 10.1016/S0022-510X(98)00008-2.
Article
CAS
PubMed
Google Scholar
Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA: Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem. 2002, 80: 616-625. 10.1046/j.0022-3042.2001.00731.x.
Article
CAS
PubMed
Google Scholar
Vielhaber S, Kunz D, Winkler K, Wiedemann FR, Kirches E, Feistner H, Heinze HJ, Elger CE, Schubert W, Kunz WS: Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain. 2000, 123 (Pt 7): 1339-48. 10.1093/brain/123.7.1339.
Article
PubMed
Google Scholar
Bergmann F, Keller BU: Impact of mitochondrial inhibition on excitability and cytosolic Ca2+ levels in brainstem motoneurons from mouse. J Physiol. 2004, 555: 45-59. 10.1113/jphysiol.2003.053900.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferri A, Gabbianelli R, Casciati A, Paolucci E, Rotilio G, Carrì MT: Calcineurin activity is regulated both by redox compounds and by mutant familial amyotrophic lateral sclerosis-superoxide dismutase. J Neurochem. 2000, 75: 606-13. 10.1046/j.1471-4159.2000.0750606.x.
Article
CAS
PubMed
Google Scholar
Rao SD, Weiss JH: Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci. 2004, 27: 17-23. 10.1016/j.tins.2003.11.001.
Article
CAS
PubMed
Google Scholar
Rothstein JD, Martin LJ, Kuncl RW: Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992, 326: 1464-8.
Article
CAS
PubMed
Google Scholar
Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995, 38: 73-84. 10.1002/ana.410380114.
Article
CAS
PubMed
Google Scholar
Trotti D, Rolfs A, Danbolt NC, Brown RH, Hediger MA: SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci. 1999, 2: 427-433. 10.1038/8091.
Article
CAS
PubMed
Google Scholar
Carriedo SG, Sensi SL, Yin HZ, Weiss JH: AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J Neurosci. 2000, 20: 240-50.
CAS
PubMed
Google Scholar
Maragakis NJ, Rothstein JD: Glutamate transporters in neurologic disease. Arch Neurol. 2001, 58: 365-70. 10.1001/archneur.58.3.365.
Article
CAS
PubMed
Google Scholar
Heath PR, Shaw PJ: Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve. 2002, 26: 438-58. 10.1002/mus.10186.
Article
CAS
PubMed
Google Scholar
Guo H, Lai L, Butchbach ME, Stockinger MP, Shan X, Bishop GA, Lin CL: Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet. 2003, 12: 2519-32. 10.1093/hmg/ddg267.
Article
CAS
PubMed
Google Scholar
Rao SD, Yin HZ, Weiss JH: Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J Neurosci. 2003, 23: 2627-2633.
CAS
PubMed
Google Scholar
Llinas R, Sugimori M, Cherksey BD, Smith RG, Delbono O, Stefani E, Appel SH: IgG from amyotrophic lateral sclerosis patients increases current through P-type calcium channels in mammalian cerebellar Purkinje cells and in isolated channel protein in lipid bilayer. Proc Natl Acad Sci USA. 1993, 90: 11743-7. 10.1073/pnas.90.24.11743.
Article
PubMed Central
CAS
PubMed
Google Scholar
Appel SH, Smith RG, Engelhardt JI, Stefani E: Evidence for autoimmunity in amyotrophic lateral sclerosis. J Neurol Sci. 1994, 124 (Suppl): 14-9. 10.1016/0022-510X(94)90171-6.
Article
PubMed
Google Scholar
Appel SH, Smith RG, Alexianu M, Siklos L, Engelhardt J, Colom LV, Stefani E: Increased intracellular calcium triggered by immune mechanisms in amyotrophic lateral sclerosis. Clin Neurosci. 1996, 3 (6): 368-374.
CAS
Google Scholar
Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD: Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2000, 23: 222-229. 10.1016/S0166-2236(00)01548-4.
Article
CAS
PubMed
Google Scholar
Beal MF: Oxidatively modified proteins in aging and disease. Free Radical Biology and Medicine. 2002, 32: 797-803. 10.1016/S0891-5849(02)00780-3.
Article
CAS
PubMed
Google Scholar
Bosch Van Den L, Schwaller B, Vleminckx V, Meijers B, Stork S, Ruehlicke T, Van Houtte E, Klaassen H, Celio MR, Missiaen L: Protective effect of parvalbumin on excitotoxic motor neuron death. Exp Neurol. 2002, 174: 150-161. 10.1006/exnr.2001.7858.
Article
Google Scholar
Simpson EP, Yen AA, Appel SH: Oxidative Stress: a common denominator in the pathogenesis of amyotrophic lateral sclerosis. Curr Opin Rheumatol. 2003, 15: 730-736. 10.1097/00002281-200311000-00008.
Article
CAS
PubMed
Google Scholar
Tateno M, Sadakata H, Tanaka M, Itohara S, Shin RM, Miura M, Masuda M, Aosaki T, Urushitani M, Misawa H, Takahashi R: Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum Mol Genet. 2004, 13: 2183-2196. 10.1093/hmg/ddh246.
Article
CAS
PubMed
Google Scholar
Von Lewinski F, Keller BU: Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci. 2005, 28: 494-500. 10.1016/j.tins.2005.07.001.
Article
CAS
PubMed
Google Scholar
Goodall EF, Morrison KE: Amyotrophic lateral sclerosis (motor neuron disease): proposed mechanisms and pathways to treatment. Expert Rev Mol Med. 2006, 8: 1-22. 10.1017/S1462399406010854.
Article
PubMed
Google Scholar
Goos M, Zech WD, Jaiswal MK, Balakrishnan S, Ebert S, Mitchell T, Carrì MT, Keller BU, Nau R: Expression of a Cu, Zn superoxide dismutase typical for familial amyotrophic lateral sclerosis increases the vulnerability of neuroblastoma cells to infectious injury. BMC Infect Dis. 2007, 12 (7): 131-10.1186/1471-2334-7-131.
Article
Google Scholar
Herrington J, Park YB, Babcock DF, Hille B: Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron. 1996, 16: 219-228. 10.1016/S0896-6273(00)80038-0.
Article
CAS
PubMed
Google Scholar
Schinder AF, Olson EC, Spitzer NC, Montal M: Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci. 1996, 16: 6125-33.
CAS
PubMed
Google Scholar
Bar PR: Motor neuron disease in vitro: the use of cultured motor neurons to study amyotrophic lateral sclerosis. Eur J Pharmacol. 2000, 405: 285-295. 10.1016/S0014-2999(00)00560-4.
Article
CAS
PubMed
Google Scholar
Sachiko T, Seiji K, Kazuyoshi S, Jun T, Riichiro K, Ichiro Y, Shoichi Y, Masayoshi T, Hidenao S: Proteasome inhibition induces selective motor neuron death in organotypic slice cultures. J Neurosci Res. 2005, 82: 443-451. 10.1002/jnr.20665.
Article
Google Scholar
Avossa D, Grandolfo M, Mazzarol F, Zatta M, Ballerini L: Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience. 2006, 138: 1179-1194. 10.1016/j.neuroscience.2005.12.009.
Article
CAS
PubMed
Google Scholar
Carri MT, Ferri A, Cozzolino M, Calabrese L, Rotilio G: Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull. 2003, 61: 365-374. 10.1016/S0361-9230(03)00179-5.
Article
CAS
PubMed
Google Scholar
Ciriolo MR, De Martino A, Lafavia E, Rossi L, Carrì MT, Rotilio G: Cu, Zn superoxide dismutase-dependent apoptosis induced by nitric oxide in neuronal cells. J Biol Chem. 2000, 275: 5065-5072. 10.1074/jbc.275.7.5065.
Article
CAS
PubMed
Google Scholar
Gabbianelli R, Ferri A, Rotilio G, Carrì MT: Aberrant copper chemistry as a major mediator of oxidative stress in a human cellular model of amyotrophic lateral sclerosis. J Neurochem. 1999, 73: 1175-80. 10.1046/j.1471-4159.1999.0731175.x.
Article
CAS
PubMed
Google Scholar
Ferri A, Nencini M, Casciati A, Cozzolino M, Angelini DF, Longone P, Spalloni A, Rotilio G, Carrì MT: Cell death in amyotrophic lateral sclerosis: interplay between neuronal and glial cells. FASEB J. 2004, 18: 1261-3.
CAS
PubMed
Google Scholar
Di Poto C, Iadarola P, Bardoni AM, Passadore I, Giorgetti S, Cereda C, Carrì MT, Ceroni M, Salvini R: 2-DE and MALDI-TOF-MS for a comparative analysis of proteins expressed in different cellular models of amyotrophic lateral sclerosis. Electrophoresis. 2007, 28: 4320-9. 10.1002/elps.200700455.
Article
CAS
PubMed
Google Scholar
Ladewig T, Keller BU: Simultaneous patch-clamp recording and calcium imaging in a rhythmically active neuronal network in the brainstem slice preparation from mouse. Pflugers Arch. 2000, 440: 322-332.
Article
CAS
PubMed
Google Scholar
Ladewig T, Kloppenburg P, Lalley PM, Zipfel WR, Webb WW, Keller BU: Spatial profiles of store-dependent calcium release in motoneurones of the nucleus hypoglossus from newborn mouse. J Physiol. 2003, 547: 775-787. 10.1113/jphysiol.2002.033605.
Article
PubMed Central
CAS
PubMed
Google Scholar
Duchen MR: Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium. 2000, 28: 339-348. 10.1054/ceca.2000.0170.
Article
CAS
PubMed
Google Scholar
Duchen MR: Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000, 15: 57-68. 10.1111/j.1469-7793.2000.00057.x.
Article
Google Scholar
Nicholls DG, Budd SL: Mitochondria and neuronal survival. Physiol Rev. 2000, 80: 315-360.
CAS
PubMed
Google Scholar
Billups B, Forsythe ID: Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci. 2002, 22: 5840-5847.
CAS
PubMed
Google Scholar
Sagara Y, Inesi G: Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem. 1991, 266: 13503-6.
CAS
PubMed
Google Scholar
Svichar N, Shmigol A, Verkhratsky A, Kostyuk P: ATP induces Ca2+ release from IP3-sensitive Ca2+ stores exclusively in large DRG neurones. Neuroreport. 1997, 8: 1555-1559.
Article
CAS
PubMed
Google Scholar
Solovyova N, Veselovsky N, Toescu EC, Verkhratsky A: Ca (2+) dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca (2+)-induced Ca (2+) release triggered by physiological Ca (2+) entry. EMBO J. 2002, 21: 622-30. 10.1093/emboj/21.4.622.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kirichok Y, Krapivinsky G, Clapham DE: The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004, 22: 360-4. 10.1038/nature02246.
Article
Google Scholar
Lytton J, Westlin M, Hanley MR: Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991, 266: 17067-71.
CAS
PubMed
Google Scholar
Jaiswal MK, Keller BU: Cu/Zn superoxide dismutase typical for familial amyotrophic lateral sclerosis increases the vulnerability of mitochondria and perturbs Ca2+ homeostasis in SOD1G93A mice. Mol Pharmacol. 2009, 75: 478-489. 10.1124/mol.108.050831.
Article
CAS
PubMed
Google Scholar
Wei H, Perry DC: Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem. 1996, 67: 2390-2398.
Article
CAS
PubMed
Google Scholar
Friel DD, Tsien RW: An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J Neurosci. 1994, 14: 4007-4024.
CAS
PubMed
Google Scholar
Budd SL, Nicholls DG: A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem. 1996, 66: 403-411.
Article
CAS
PubMed
Google Scholar
David G, Barrett JN, Barrett EF: Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. J Physiol. 1998, 509: 59-65. 10.1111/j.1469-7793.1998.059bo.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH: The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol. 1994, 36: 846-858. 10.1002/ana.410360608.
Article
CAS
PubMed
Google Scholar
Siklós L, Engelhardt JI, Alexianu ME, Gurney ME, Siddique T, Appel SH: Intracellular calcium parallels motoneuron degeneration in SOD-1 mutant mice. J Neuropathol Exp Neurol. 1998, 57: 571-87. 10.1097/00005072-199806000-00005.
Article
PubMed
Google Scholar
Beers DR, Ho BK, Siklos L, Alexianu ME, Mosier DR, Habib Mohamed A, Otsuka Y, Kozovska ME, Smith RE, McAlhany RG, Appel SH: Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. J Neurochem. 2001, 79: 499-509. 10.1046/j.1471-4159.2001.00582.x.
Article
CAS
PubMed
Google Scholar
Balakrishnan S, Bergmann F, Keller BU: Mitochondria differentially regulate [Ca]i in brainstem motoneurons from mouse: implications for selective motoneuron vulnerability [abstract]. Program No. 340.16, Abstract Viewer and Itinerary Planner, Society for Neuroscience. 2004, [http://www.sfn.org/index.aspx?pagename=abstracts_ampublications]
Google Scholar
Jaiswal MK, Stefan H, Balakrishnan S, Schomburg ED, Keller BU: Disruptions of [Ca]i and mitochondria in the adult SOD1G93A mouse model of ALS: evidence from recordings in vitro and in vivo. Program No. 508.8. 2006, [http://www.sfn.org/index.aspx?pagename=abstracts_ampublications] , In 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience
Google Scholar
David G, Barrett EF: Stimulation-evoked increases in cytosolic [Ca2+] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. J Neurosci. 2000, 20: 7290-7296.
CAS
PubMed
Google Scholar
Fill M, Copello JA: Ryanodine receptor calcium release channels. Physiol Rev. 2002, 82: 893-922.
Article
CAS
PubMed
Google Scholar
Sher AA, Hinch R, Noble PJ, Gavaghan DJ, Noble D: Functional significance of Na+/Ca2+ exchangers co-localization with ryanodine receptors. Ann N Y Acad Sci. 2007, 1099: 215-220. 10.1196/annals.1387.047.
Article
CAS
PubMed
Google Scholar
Leoty C, Huchet-Cadiou C, Talon S, Choisy S, Hleihel W: Caffeine stimulates the reverse mode of Na+/Ca2+ exchanger in ferret ventricular muscled. Acta Physiologica Scandinavica. 2001, 172: 27-37. 10.1046/j.1365-201X.2001.00819.x.
Article
CAS
PubMed
Google Scholar
Sasaki S, Warita H, Murakami T, Abe K, Iwata M: Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. 2004, 107: 461-74. 10.1007/s00401-004-0837-z.
Article
PubMed
Google Scholar
Sasaki S, Warita H, Abe K, Iwata M: Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. 2005, 110: 48-56. 10.1007/s00401-005-1021-9.
Article
CAS
PubMed
Google Scholar
Sen I, Nalini A, Joshi NB, Joshi PG: Cerebrospinal fluid from amyotrophic lateral sclerosis patients preferentially elevates intracellular calcium and toxicity in motor neurons via AMPA/kainate receptor. J Neurol Sci. 2005, 235: 45-54. 10.1016/j.jns.2005.03.049.
Article
CAS
PubMed
Google Scholar