P1 Potential functions of different temporal patterns of intermittent neural synchronization
Leonid L. Rubchinsky1,2, Sungwoo Ahn3
1Indiana University Purdue University Indianapolis, Indianapolis, IN 46032, USA; 2Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46032, USA; 3Department of Mathematics, East Carolina University, Greenville, NC 27858, USA
Correspondence: Leonid L. Rubchinsky (lrubchin@iupui.edu)
BMC Neuroscience 2017, 18(Suppl 1):P1
Synchronization of neural activity has been associated with several neural functions and abnormalities of neural synchrony are associated with different neurological and neuropsychiatric diseases. Neural synchrony in the brain is usually intermittent rather than perfect, even on a very short time-scales. Temporal patterning of synchrony may impact neural function even if the average synchrony strength is fixed (few long intervals of desynchronized dynamics may be functionally different from many short asynchronous intervals even if the average synchrony is the same). Thus, it is of interest to explore network effects of different temporal patterns of neural synchrony.
Detection and quantification of the temporal patterning of synchronization is possible on the very short time-scales (up to one cycle of oscillations, provided that the data episode under analysis possesses some statistically significant synchrony level on the average [1,2]). These techniques allowed for exploration of the fine temporal structure of synchronization of neural oscillations. Experimental studies of neural synchrony in different neural systems report a feature, which appears to be universal: the intervals of desynchronized activity are predominantly very short (although they may be more or less numerous, which affects average synchrony). These observations have been found in different brain areas (cortical and subcortical), different species (humans and rodents), different brain rhythms (alpha, beta, theta), and different disease and behavioral status [3–5].
These observations may suggest that these quick numerous desynchronization events may potentially facilitate creation and break-up of functional synchronized neural assemblies, because both synchronized and desynchronized states are already present in the neural activity. This in turn may promote adaptability and quick reaction of neural systems. Other highly adaptable physiological systems may express short desynchronization dynamics too [6].
We use a minimal network of simple conductance-based model neurons to study how different patterning of intermittent neural synchrony affects formation of synchronized states in response to the common synaptic input to the network. We found that the networks with short desynchronization dynamics are easier to synchronize with the input signal and consider this phenomenon in the context of the experimental observations of neural synchrony patterning.
References
1. Ahn S, Park C, Rubchinsky LL: Detecting the temporal structure of intermittent phase locking. Physical Review E 2011, 84: 016201.
2. Rubchinsky LL, Ahn S, Park C: Dynamics of synchronization-desynchronization transitions in intermittent synchronization. Frontiers in Computational Physics 2014, 2:38.
3. Ahn S, Rubchinsky LL: Short desynchronization episodes prevail in the synchronous dynamics of human brain rhythms. Chaos 2013, 23: 013138.
4. Ahn S, Rubchinsky LL, Lapish CC: Dynamical reorganization of synchronous activity patterns in prefrontal cortex - hippocampus networks during behavioral sensitization. Cerebral Cortex 2014, 24: 2553–2561.
5. Ratnadurai-Giridharan S, Zauber SE, Worth RM, Witt T, Ahn S, Rubchinsky LL: Temporal patterning of neural synchrony in the basal ganglia in Parkinson’s disease. Clinical Neurophysiology 2016, 127:1743–1745.
6. Ahn S, Solfest J, Rubchinsky LL: Fine temporal structure of cardiorespiratory synchronization. American Journal of Physiology - Heart and Circulatory Physiology 2014, 306: H755–H763.