Skip to main content

Advertisement

Multi input multi output neural population encoding

Article metrics

  • 838 Accesses

A formal mathematical model for representing neural stimuli is presented. The model enables the investigation of stimulus representation by spiking neurons, and provides algorithms that under certain conditions can recover the stimuli with no error, by knowing only the time of the spike trains.

In our model, we assume that N bandlimited input stimuli approach the dendritic trees of M spiking neurons. Each stimulus comes to a different branch of each dendritic tree, and each dendritic tree is modeled as a linear time invariant (LTI) filter. The outputs of all dendritic branches are summed together with a background current (bias), and this sum enters the soma of each neuron, which is modeled as an Integrate-and-Fire neuron.

We prove that under certain conditions, it is possible to recover all N input spike trains, by knowing only the M spike trains, and provide an algorithm for that purpose. The proof comes from the mathematical theory of frames and the conditions require a minimum average spike density from the neurons and some mild conditions in the impulse responses of the dendritic branches/filters.

We illustrate this algorithm with an example that recovers the stimuli when the dendritic branches perform arbitrary but known time-shifts to the signal. This particular example is important as it illustrates how information from sensory neurons that respond with different latencies, can be combined together.

Finally, the model points to the significance of neural population codes, as it shows that data from a single neuron can be misleading in terms of what the input stimulus is. We illustrate this significant observation with an example.

Author information

Correspondence to Aurel A Lazar.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Lazar, A.A., Pnevmatikakis, E. Multi input multi output neural population encoding. BMC Neurosci 8, S5 (2007) doi:10.1186/1471-2202-8-S2-S5

Download citation

Keywords

  • Spike Train
  • Dendritic Tree
  • Input Stimulus
  • Neural Population
  • Dendritic Branch