Skip to main content

Spike timing dependent plasticity implements reinforcement learning

An explanatory model is developed to show how synaptic learning mechanisms modeled through spike-timing dependent plasticity (STDP) can result in longer term adaptations consistent with reinforcement learning models. In particular, the reinforcement learning model known as temporal difference (TD) learning has been used to model neuronal behavior in the orbitofrontal cortex (OFC) and ventral tegmental area (VTA) of macaque monkey during reinforcement learning. While some research has observed, empirically, a connection between STDP and TD there is as yet no explanatory model directly connecting TD to STDP. Through analysis of the STDP rule, the connection between STDP and TD is explained. We further show that an STDP learning rule drives the spike probability of reward predicting neurons to a stable equilibrium. The equilibrium solution has an increasing slope where the steepness of the slope predicts the probability of the reward. This connection begins to shed light into more recent data gathered from VTA and OFC which are not well modeled by TD. We suggest that STDP provides the underlying mechanism for explaining reinforcement learning and other higher level perceptual and cognitive function.

Author information



Corresponding author

Correspondence to Patrick D Roberts.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Santiago, R.A., Roberts, P.D. & Lafferriere, G. Spike timing dependent plasticity implements reinforcement learning. BMC Neurosci 8, S16 (2007).

Download citation


  • Cognitive Function
  • Temporal Difference
  • Longe Term
  • Ventral Tegmental Area
  • Reinforcement Learning