Skip to main content

Advertisement

You are viewing the new article page. Let us know what you think. Return to old version

Resonant responses to variance modulation in stochastic integrate-and-fire neurons

In the stochastic integrate-and-fire (SIF) model, the distribution of membrane potentials is subject to drift, due to the mean input current, and diffusion, due to input variance; the firing rate is determined as the instantaneous probability of crossing threshold. Previous research has shown that when the drift term dominates, the SIF acts like a neural resonator, amplifying fluctuations in the mean input at multiples of the neuron's steady-state firing frequency. Here we show that the SIF also displays two distinct resonances to fluctuations in the input variance. Similar to the resonance for mean input fluctuations, the first "drift resonance" occurs near the steady-state firing frequency and is found only in the drift dominated (regular firing) regime. However, the peak of this resonance occurs at frequencies slightly higher than the steady-state firing frequency. The second "variance resonance" differs significantly from the drift resonance and predominates in the variance dominated (random firing) regime. This resonance has a broader frequency range and peaks at frequencies an order of magnitude greater than the underlying steady-state firing frequency of the neuron. Because oscillatory input that synchronously activates excitatory and inhibitory neurons is expected to generate disynaptic input modulations of the variance and not necessarily the mean, the variance resonance may play a significant role in modulating oscillatory activity in circuits with a balance of excitation and inhibition.

Author information

Correspondence to Joanna Pressley.

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • Significant Role
  • Membrane Potential
  • Firing Rate
  • Variance Modulation
  • Input Current