Introduction
Perceptual abilities in humans are shaped by attention. Assessing the underlying mechanisms is barely possible due to the distributed nature of cognitive processing. One of the gateways to selective attention is negative priming (NP), a slowdown of the reaction to previously ignored stimuli in a range of 10 to 40 milliseconds. Variants of NP reveal the active processing of irrelevant stimuli up to a semantic level. The occurrence of the effect is, however, sensitive to details of the experimental conditions, making it difficult to vary parameters experimentally. Due to the sparse insight, modeling remains to some stage arbitrary. To formulate a well-grounded model, we focus on (1) detailed computational modeling, (2) a psychophysical view in the brain with EEG-recordings, (3) elaborated data analysis.