Skip to main content
  • Poster presentation
  • Open access
  • Published:

Pseudohyperphosphorylation of tau is sufficient to induce aberrant sprouting and activation of ERK1/2 in transgenic mice

Hyperphosphorylation of tau is a characteristic of Alzheimer's disease (AD). Our group has established a model for tau hyperphosphorylation by mutating 10 residues from Ser/Thr to Glu to simulate the negative charge of phosphorylated residues ("pseudohyperphosphorylated (PHP)-tau").

In order to analyze temporal and spatial effects of hyperphosphorylation of tau in a systemic context, we have established transgenic mouse lines that express human wild-type (wt)- or PHP-tau under the control of the CamKIIalpha-promoter that leads to a forebrain specific moderate expression in neurons, i.e. the region where also tau-pathology in AD is abundant.

For the evaluation of tau-induced changes in the transgenic mice, we quantified spine densities in the neocortex and hippocampus of transgenic mice. The spine densitiy was significantly increased in PHP-tau compared to wt-tau expressing mice. It is known that AD is associated with aberrant pre- and postsynaptic sprouting. Axonal sprouting is also observed in transgenic mice expressing mutated amyloid precursor protein (APP), which suggests that Abeta plays a significant role in this process.

We deduce from our results, that (pseudo)-hyperphosphorylation of tau is sufficient to induce aberrant sprouting in the absence of Abeta. Analyses whether this sprouting is induced by pre- or postsynaptic changes and if functionally active synapses are formed are in progress. It will be interesting to determine if stabilization of these newly formed synapses slows or – in contrary – accelerates the progression of the disease.

Sprouting as observed in our PHP-tau expressing mice is part of neuronal differentiation. One family of enzymes that is involved in cell differentiation are mitogen-acitvated protein kinases (MAPK). Western blot analysis was performed with brain lysates from transgenic mice to check whether PHP-tau induced sprouting is associated with MAPK activation. In fact, we also observed an increased activation of the MAPK ERK1/2 evident by phosphorylation of the residues Thr202 and Tyr204.

ERK1/2 is also known to phosphorylate tau at sites characteristic for AD. Our results suggest the presence of a vicious circle by which (pseudo)-hyperphosphorylated tau activates ERK1/2 which in turn phosphorylates tau.

Author information

Authors and Affiliations


Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Hundelt, M., Selle, K., Kosfeld, A. et al. Pseudohyperphosphorylation of tau is sufficient to induce aberrant sprouting and activation of ERK1/2 in transgenic mice. BMC Neurosci 8 (Suppl 1), P27 (2007).

Download citation

  • Published:

  • DOI: