Skip to main content

Advertisement

The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion

Article metrics

  • 1378 Accesses

Here we investigated the role of the amyloid precursor protein (APP) in regulation of Ca2+ store depletion-induced neural cell death. Ca2+ store depletion from the endoplasmic reticulum (ER) was induced by the SERCA (Sarco/Endoplasmic Reticulum Calcium ATPase) inhibitor thapsigargin which led to a rapid induction of the unfolded protein response (UPR) and a delayed activation of executioner caspases in the cultures. Overexpression of APP potently enhanced cytosolic Ca2+ levels and cell death after ER Ca2+ store depletion in comparison to vector-transfected controls. GeneChipR and RT-PCR analysis revealed that the expression of classical UPR chaperone genes was not altered by overexpression of APP.Interestingly, the induction of the ER stress-responsive pro-apoptotic transcription factor CHOP was significantly upregulated in APP-overexpressing cells in comparison to vectortransfected controls. Chelation of intracellular Ca2+ with BAPTA-AM revealed that enhanced CHOP expression after store depletion occured in a Ca2+-dependent manner in APPoverexpressing cells. Prevention of CHOP induction by BAPTA-AM and by RNA interference was also able to abrogate the potentiating effect of APP on thapsigargin-induced apoptosis. Application of the store-operated channel (SOC)-inhibitors SK F96365 and 2-APB downmodulated APP-triggered potentiation of cytosolic Ca2+ levels and apoptosis after treatment with thapsigargin. Our data demonstrate that APP-mediated regulation of ER Ca2+ homeostasis significantly modulates Ca2+ store depletion-induced cell death in a SOC- and CHOP-dependent manner, but independent of the UPR.

Author information

Correspondence to Ekaterini Copanaki.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Endoplasmic Reticulum
  • Unfold Protein Response
  • Amyloid Precursor Protein
  • Thapsigargin
  • Store Depletion