Volume 8 Supplement 2

Sixteenth Annual Computational Neuroscience Meeting: CNS*2007

Open Access

Age-related neuromorphological distortion affects stability and robustness in a simulated test of spatial working memory

BMC Neuroscience20078(Suppl 2):P169

DOI: 10.1186/1471-2202-8-S2-P169

Published: 6 July 2007

Normal aging in humans and nonhuman primates is associated with cognitive decline, particularly in tasks involving working memory function that relies on the prefrontal cortex [1]. Because normal aging is not correlated with widespread neuron death or gross morphological degeneration, the biological substrate of these deficits remains unclear [2]. We have constructed a simulated network of model neurons with sufficient detail to model age-related perturbations to morphology and network connectivity, in order to investigate the extent to which these morphological changes in single neurons could explain the functional degradation.

Spatial working memory can be modeled with a "bump"-style network of recurrently connected model neurons, characterized by a continuum of dynamical attractor states that provide an analogue of working memory of spatial orientation [3]. A bump-attractor network (Figure 1) was constructed using branching compartmental models of layer 2/3 neocortical pyramidal neurons [4]. Spine number and density are reduced with age in this neuron type [5], a morphological perturbation that was modeled as a reduction in both recurrent network connectivity and equivalent dendritic surface area. Network function was quantified in terms of the dynamical stability of network attractor states during the delay period of a simulated memory task, as well as the robustness of task performance against perturbation of network parameters. Stability and robustness were compared between "young" and "aged" model neuron populations with the multi-dimensional stability manifold method, which has been used in a previous study to examine the dependence of network simulations on modeling methodology [6].
Figure 1

"Bump" attractor network model receiving input encoding the direction '315°' (green neuron), with fully interconnected populations of layer 2/3 pyramidal neurons and GABAergic interneurons. Neurons are arranged in direction-selective columns. Directionally-tuned input arrives along afferent collaterals (black arrows). Excitatory connections project preferentially to cells in similarly tuned columns (weighting in inset, upper right).

By defining a stability manifold, we demonstrate how stability and robustness can be quantified as a function of biologically relevant perturbations to single cell morphology and network parameters. This provides a novel technique for evaluating the functional significance of local morphological changes, caused by age, disease or injury, upon cognition at the organism scale.



Supported by NIH grants MH071818, DC05669, AG02219, AG05138.

Authors’ Affiliations

Department of Neuroscience, Mt. Sinai School of Medicine


  1. Gallagher M, Rapp PR: The use of animal models to study the effects of aging on cognition. Annu Rev Psychol. 1997, 48: 339-70. 10.1146/annurev.psych.48.1.339.PubMedView ArticleGoogle Scholar
  2. O'Donnell KA, Rapp PR, Hof PR: Preservation of prefrontal cortical volume in behaviorally characterized aged macaque monkeys. Exp Neurol. 1999, 160: 300-310. 10.1006/exnr.1999.7192.PubMedView ArticleGoogle Scholar
  3. Tegnér J, Compte A, Wang X-J: The dynamical stability of reverberatory neural circuits. Biol Cybern. 2002, 87: 471-481. 10.1007/s00422-002-0363-9.PubMedView ArticleGoogle Scholar
  4. Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA: Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol. 2005, 93: 2194-2232. 10.1152/jn.00983.2004.PubMedView ArticleGoogle Scholar
  5. Kabaso D, Nilson J, Luebke JI, Hof PR, Wearne SL: Electrotonic analysis of morphologic contributions to increased excitability with aging in neurons of the prefrontal cortex of monkeys. Program number 237.10. 2006 Abstract Viewer and Itinerary Planner. 2006, Washington, DC: Society for NeuroscienceGoogle Scholar
  6. Coskren PJ, Hof PR, Wearne SL: Stability and robustness in an attractor network are influenced by degree of morphology reduction. Poster S.97, CNS*. 2006Google Scholar


© Coskren et al; licensee BioMed Central Ltd. 2007

This article is published under license to BioMed Central Ltd.