Volume 11 Supplement 1

Nineteenth Annual Computational Neuroscience Meeting: CNS*2010

Open Access

Correlation-based approach to analysis of spiking networks

BMC Neuroscience201011(Suppl 1):P182

DOI: 10.1186/1471-2202-11-S1-P182

Published: 20 July 2010

The correlation structure of neural activity is believed to play a major role in the encoding and possibly decoding of information in neural populations. In addition, some of the most fundamental and widely applied tools for the identification of systems rely on the use of second order statistical properties (correlation or spectral). An arsenal of tools for identifying spike train models from their correlations, rather than from their full observed realizations could thus form a welcome bridge between ‘classical’ signal processing ideas and tools and the field of neural spike train analysis.

Recently, several methods were developed for controlling the correlation structure of multi-channel synthetic spike trains [1, 35], and in related work, correlation based analysis of spike trains was used for blind identification of single-neuron models [5], for identifying compact auto-regressive models for multi-channel spike trains, and for facilitating their causal network analysis [6]. However, the diversity of correlation structures that can be explained by the non-recurrent generative models used in these studies is limited, and hence, methods based on such models occasionally fail while analyzing correlation structures that are observed in neural activity. Here, we extend this framework by deriving closed-form expressions for the correlation structure of a more powerful multivariate self- and mutually-exciting Hawkes model class that is driven by exogenous non-negative inputs. We demonstrate that the resulting Linear-Nonlinear-Hawkes (LNH) framework is capable of capturing the dynamics of spike trains with a generally richer multi-correlation structure. We explore several new applications of this framework including highly compact representation of multi-channel spike train data and causal analysis of network information flow.



This work was supported by Israeli Science Foundation grant #1248/06 and European Research Council starting grant #211055.

Authors’ Affiliations

Faculty of Biomedical Engineering, Technion – Israel Institute of Technology


  1. Brette R: Generation of Correlated Spike Trains. Neural Computation. 2009, 21 (1): 188-215. 10.1162/neco.2009.12-07-657.View ArticlePubMedGoogle Scholar
  2. Macke JH, Berens P, Ecker AS, Tolias AS, Bethge M: Generating Spike Trains with Specified Correlation Coefficients. Neural Computation. 2009, 21 (2): 397-423. 10.1162/neco.2008.02-08-713.View ArticlePubMedGoogle Scholar
  3. Krumin M, Shoham S: Generation of Spike Trains with Controlled Auto- and Cross-Correlation Functions. Neural Computation. 2009, 21 (6): 1642-64. 10.1162/neco.2009.08-08-847.View ArticlePubMedGoogle Scholar
  4. Tchumatchenko T, Malyshev A, Geisel T, Volgushev M, Wolf F: Correlations and Synchrony in Threshold Neuron Models. Phys Rev Lett. 2010, 104 (5): 058102-10.1103/PhysRevLett.104.058102.View ArticlePubMedGoogle Scholar
  5. Krumin M, Shimron A, Shoham S: Correlation-distortion based identification of Linear-Nonlinear-Poisson models. J Comput Neurosci. 2009Google Scholar
  6. Krumin M, Shoham S: Multivariate Auto-Regressive Modeling and Granger Causality Analysis of Multiple Spike Trains. Computational Intelligence and Neuroscience. 2000.Google Scholar


© Shoham and Krumin; licensee BioMed Central Ltd. 2010

This article is published under license to BioMed Central Ltd.