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Abstract 

Background:    Passive auditory oddball tests are effort independent assessments that evaluate auditory processing 
and are suitable for paediatric patient groups. Our goal was to develop a two-tone auditory oddball test protocol and 
use this clinical assessment in an immature large animal model. Event-related potentials captured middle latency P1, 
N1, and P2 responses in 4-week old (N = 16, female) piglets using a custom piglet 32- electrode array on 3 non-con-
secutive days. The effect of target tone frequency (250 Hz and 4000 Hz) on middle latency responses were tested in a 
subset of animals.

Results:  Results show that infrequent target tone pulses elicit greater N1 amplitudes than frequent standard tone 
pulses. There was no effect of day. Electrodes covering the front of the head tend to elicit greater waveform responses. 
P2 amplitudes increased for higher frequency target tones (4000 Hz) than the regular 1000 Hz target tones (p < 0.05).

Conclusions:  Two-tone auditory oddball tests produced consistent responses day-to-day. This clinical assessment 
was successful in the immature large animal model.
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Highlights

•	 Two-tone auditory oddball tests were successfully 
assessed in an immature large animal model.

•	 Consistent N1, P2 amplitudes were observed across 
three non-consecutive test days.

•	 Infrequent target tone pulses elicited greater ampli-
tude responses than frequent standard tone pulses.

Background
Approximately 283,000 children and adolescents 
(< 18  years old) visit the emergency department for a 
sports related traumatic brain injury (TBI) [1]. Consider-
ing the number of people who fail to seek medical care 
due to the seemingly ‘mild’ nature of some brain injury 
symptoms, the incidence of sports related TBI is likely 
much higher and has been estimated to be between 
1.3 and 3.8  million [2]. The primary cause of non-fatal 
TBI for those 0–4  years old are from falls, and those 
5–19  years old are from sport and recreation activities 
[3]. Mild TBI diagnosis relies on self-reported signs and 
symptoms and voluntary participatory assessments [4] 
resulting in greater challenges capturing accurate report-
ing and evaluation in the young paediatric population. 
There is heightened concern for mTBI in this age group 
due to the potential long-term neurological sequelae 
affecting cognition and behavior hindering learning and 
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development, thus supporting the need for objective bio-
markers of mTBI that are not dependent upon patient 
reporting and effort [5].

Electroencephalography (EEG) is a promising tool 
in the study of neurological diseases as it measures the 
electrical potential of the brain on the millisecond scale 
and provides a real-time assessment of neural processes. 
Event related potentials (ERPs), measure brain-related 
activity in response to a stimulus and relates cerebral 
function with deficits and injury outcomes [6, 7]. Audi-
tory ERPs from infants and children in response to 
speech and sound processing have been correlated with 
the development of language suggesting that early dif-
ferentiation of speech sounds have favorable associations 
with learning and reading capability [8–10]. In addition, 
auditory ERPs have been used as indices marking severe 
language impairment in children ages 9–15  years old 
in comparison to age matched controls [11]. Auditory 
oddball paradigms and ERPs are common tests used to 
elicit auditory processing at the cortical level [12, 13], 
and have been used as a marker of altered cognition in 
various diseased populations including concussion [14], 
schizophrenia [15] and autism [16]. These tests are effort 
independent tests that present infrequent ‘target’ tone 
pulses amongst a series of more frequent ‘standard’ tone 
pulses. Typically, the target tone elicits greater electri-
cal potentials reflected as larger magnitude responses in 
comparison to the standard tones. Common response 
characteristic of the auditory oddball paradigm reflected 
in the EEG waveform are a series of positive peaks (P) and 
negative troughs (N) subsequently labelled in ascending 
temporal order (P1, N1, P2) or based on time course (P50 
at 50 ms). Auditory stimulation causes an early positive 
peak, P1 or P50 around 50 ms and is associated with an 
orientation to a new sound, not yet influenced by atten-
tion. What follows is a negative peak around 100  ms 
(N1), thought to be associated with early attention and 
related to detecting sensory changes. A second positive 
peak at 200 ms (P2) is also considered to be involved in 
early attention [12, 13].

Findings in the literature for concussed patient groups 
have reported attenuated amplitudes and longer latency 
responses in comparison to a healthy cohort [17]. The 
on-going hypothesis is that the altered brain is unable 
to mobilize attentional resources to elicit similar magni-
tude responses (reduced amplitudes) and longer latencies 
indicate slower processing speeds [12]. Research findings 
have not been congruent across studies where some have 
demonstrated no differences in ERPs between injured 
and healthy cohorts, which may be a result of subtleties 
in the auditory oddball paradigm employed [14]. Pas-
sively listening to tones versus more complex oddball 
tasks requiring active participation through counting or 

pressing a button at the presentation of a target stimu-
lus can involve different auditory pathways [18]. Despite 
more complex tasks revealing subtleties in auditory defi-
cits after mTBI [19, 20], these participatory assessments 
may present an added challenge in the paediatric patient.

In addition to non-uniform test protocols and stimulus 
paradigms employed across studies, diverse findings can 
also be attributed to participant ages, sample sizes and 
the mechanisms or causes of head trauma [21, 22]. The 
mechanism of injury plays a primary role in the patterns 
of trauma where biomechanical characteristics such as 
the direction of head movement and relative levels of 
head rotation influence the nature and distribution of 
neural tissue traumas and subsequent injury outcomes 
[23, 24]. Varying levels of these injury factors likely con-
tribute to the specific brain structures and functions that 
result in diverse signs and symptoms associated with 
mTBI, possibly leading to sub-types of concussion [25].

Preclinical animal models allow control of a number of 
factors, including biomechanical loading characteristics 
that permit systematic evaluation of structural, func-
tional, and behavioural outcomes. Pigs are a common 
large animal model used to study neurological disorders 
and TBI [26, 27]. The 4-week old piglet brain is an estab-
lished model of paediatric TBI and has been previously 
used to study diffuse axonal injury and intracranial haem-
orrhage [28, 29]. The anatomy of the pig brain contains 
similar distributions of white and grey matter, in addition 
to well-formed sulci and gyri that are key to modelling 
the human brain [30, 31]. The maturation trajectory of 
piglet brains are also similar to the young human brain 
with the 3–4 week old and 3 month old piglet paralleling 
the child and adolescent brain [32–34].

The objective of this study is to establish the auditory 
oddball response, a common study paradigm used in 
humans, in the 4-week old piglet model to benchmark 
auditory processing in a healthy cohort. It is hypoth-
esized that P1, N1, P2 features will be observable in the 
waveform responses, and that the infrequent randomized 
target tones produce a greater response than the frequent 
standard tones. A second objective was to examine the 
effect of target tone frequency. In a separate set of tests, 
the frequency of the target tone was four times lower 
(250 Hz) or higher (4000 Hz) than the regular target tone 
(1000 Hz). The standard tone in all cases was 800 Hz. It 
is hypothesized that the greater the 4000 Hz target tone 
would produce a greater P1, N1, and P2 amplitudes than 
the 250 and 1000 Hz target tones.

Methods
All procedures were approved by the Institutional Ani-
mal Care and Use Committee (IACUC) at Emory Univer-
sity School of Medicine. Experiments were carried out in 
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an AAALAC International (Association for Assessment 
and Accreditation of Laboratory Animal Care) accred-
ited facility. Sixteen 4-week-old female Yorkshire piglets 
(Sus Sus scrofa) were acquired from a commercial ven-
dor, Palmetto Research Swine (South Carolina, USA) 
and were studied in this research to understand auditory 
processing in a healthy cohort. The animals were housed 
in groups of two to four in metal enclosures with plas-
tic slated floors to allow for socialization. All animals 
were on a 12-h light and 12-h dark cycle and permitted 
ad libitum access to mini pig start diet (LabDiet 5080, St. 
Louis, MO) and water. All data collection was performed 
in a separate test room that housed all necessary equip-
ment. Prior to auditory tests, animals were acclimated to 
the test room, sling, and a nylon stocking to simulate the 
EEG net. Acclimation was repeated on two separate days. 
On test days, animals were taken one at a time into the 
test room, placed in a sling, and were closely monitored 
and supported by two research staff.

EEG were collected using a custom-built 32-elec-
trode Hydrocel Geodesic Sensor Net (GSN), originally 
designed for use on humans, that recorded scalp electri-
cal activity during auditory stimuli (Electric Geodesics 
Inc., EGI, Eugene, OR). The electrode net is an elastomer 
structure with embedded chambers containing a sin-
gle electrode and sponge, with room for eyes and ears 
and adjustable chinstraps to ensure a close fit. A com-
puter cart with a Hypertronics connector arm links the 
32-electrode net to the Net Amps 400 amplifier (Electric 
Geodesics Inc., EGI, Eugene, OR) and houses the data 
acquisition and stimulus presentation computers. Data 
acquisition was accomplished using a MacBook Pro lap-
top with Netstation 5.0 software (Electric Geodesics Inc., 
EGI, Eugene, OR) synchronized to a PC computer with 

E’ Prime 2.0 (Psychology Software Tools, Inc, Pittsburgh, 
PA) stimulus presentation software. A portable speaker 
connected to the PC computer via audio jack played the 
auditory stimuli at a distance of approximately 0.5  m 
from the top and centre of the piglets head. Prior to test-
ing, the electrode net was soaked in a solution of baby 
shampoo (5 mL) and potassium chloride (10 mL) mixed 
in 1 L of water for at least 5 min. The net was then applied 
to the surface of the animal’s head and electrical imped-
ance for all electrodes was checked to be below 1 kΩ. A 
light nylon stocking with holes cut out for ears and eyes 
was fitted over the electrode net to maintain scalp con-
tact throughout data collection.

Part A—regular oddball clicktrain
EEG data was collected for each animal in response to an 
auditory oddball paradigm comprised of 100 tone pulses 
with each pulse lasting 2 ms and an inter-stimulus inter-
val of 280 ms. The ‘regular’ oddball clicktrain was com-
prised of 70 standard 800  Hz tone pulses and 30 target 
1000  Hz tone pulses played in random order (Fig.  1). 
Each 100-pulse clicktrain lasted approximately 30  s and 
was repeated for each animal to obtain 6 good trials. 
Twelve piglets (N = 12) were tested according to the ‘reg-
ular’ oddball click train for three non-consecutive days of 
testing.

Part B—alternative target pulse clicktrain
A subset of six animals (out of twelve from Part A) were 
played an alternative clicktrain on a fourth day where the 
pitch of the target was either a low 250  Hz target tone 
pulse (3 animals) or a high 4000 Hz target tone pulse (3 
animals). Four additional animals were studied and sub-
ject to the regular oddball clicktrain, followed by a low 

Fig. 1  Depiction of an animal fitted with the 32-electrode net (left) and a representation of the auditory oddball stimulus presentation sequence 
(right)
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target pulse click train (2 animals) or a high target pulse 
click train (2 animals). All of these tests occurred on the 
same day, where the regular oddball was played first, fol-
lowed by the alterative oddball clicktrain to keep with a 
similar order as the subset of six animals studied from 
Part  A. In total, five animals were tested according to 
regular and low target (N = 5) pulse clicktrains and five 
animals were tested with regular and high target (N = 5) 
pulse clicktrains. All animal data from both the regular 
and the alternative oddball click trains were processed 
and there were no exclusions from analysis. All animals 
were euthanized within 3 days after the last study day 
with an overdose of pentobarbital (Euthasol 1 mL/10  lb 
of body weight) via an intracardiac injection. Prior to the 
injection, all piglets were under general anaesthesia using 
isoflurane at a rate of 3–5% and the absence of a deep 
pain response was confirmed using a toe pinch.

Data processing
Data were processed using Netstation Tools (Electric 
Geodesics Inc., EGI, Eugene, OR) to filter (band pass: 
0.1–30 Hz), segment (300 ms epochs; 50 ms before and 
250  ms after stimulus), and to detect and replace bad 
channels (> 200 µV). Baseline correction, artefact detec-
tion and eye blink removal were completed via inde-
pendent components analysis in EEGlab (Versio14.12; 
Delorme & Makeig, 2004) and Matlab (Version: 2018b; 
The Mathworks, Inc., Natick, MA, USA; Onton, Wester-
field, Townsend, & Makeig, 2006). Waveform averaging, 
visualization, and peak extraction for each animal per day 
were also conducted in EEGlab and Matlab.

Data analysis strategy
EEG waveforms were examined to locate the first iden-
tifiable local maxima, followed by a local minima, and 
subsequent local maxima corresponding to the P1, N1, 
and P2 peaks. Prior to peak amplitude extraction of P1, 
N1, and P2, grand waveform averages for all three days of 
testing per animal were examined to determine approxi-
mate latency widows for each peak. These latencies were 
then used to guide peak amplitude extraction for each 
animal per day for electrodes representing regions of the 
crown (9, 10, 19, 20), front (1, 2, 3, 4, 17, 27), left (5, 11, 
13, 15), and right (6, 12, 14, 16, 24) (Fig. 2). The amplitude 
and latency values for each group of electrodes were then 
averaged and used as input as a single value for statistical 
analysis.

Statistical analysis
Part A—regular oddball clicktrain
Three-way repeated measures ANOVAs evaluated the 
effects of “electrode group” (4 levels: front, crown, left 
and right), “tone type” (2 levels: standard and target) 

and the repeated factor of “day” (3 levels: day 1, 2, and 3) 
on P1, N1, and P2, and P1-N1 and N1-P2 peak-to-peak 
amplitudes and latencies. Post hoc analyses involved 
Bonferroni tests if variances were equal based on Mauch-
ly’s sphericity tests and Dunnett’s T3 if variances were 
unequal.

Part B—alternative target pulse clicktrain
Paired t-tests for regular target pulse (1000 Hz) and alter-
native target pulse (250 Hz or 4000 Hz) were conducted 
on P1, N1, and P2, and P1-N1 and N1-P2 peak-to-peak 
amplitudes and latencies. All statistics were conducted 
using IBM SPSS Statistics Version 25 for Windows 
(Armonk, NY: IBM Corp.) and significance was accepted 
at p < 0.05.

Results
Part A—regular oddball clicktrain
Grand averages for target and standard waveforms are 
presented in Fig.  3. A single electrode is shown to rep-
resent the different electrode groups: 17 for front, 19 for 
crown, 13 and 14 for left and right, respectively. The N1 
and P2 amplitudes had consistent negative and positive 
values however; distinguishable P1 local maxima were 
not always present or did not have a positive value across 
electrodes, animals, and test days (Fig. 3). Therefore, P1 
values were not used in the statistical analysis and the 
dependent variables were limited to N1, P2, and N1-P2 
peak-to-peak amplitudes and latencies.

A summary of amplitudes and latencies for healthy 4 
week-old piglets across all three days tested is presented 
in Table  1 as means and standard deviations for each 

Fig. 2  Illustration of electrode net on model piglet head with crown 
(blue), front (red), left (green) and right (yellow) electrode groups 
shown
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electrode group. There were significant main effects for 
tone type (F(1,11) = 5.4, p=0.041, ηp2 = 0.328) and elec-
trode group (F(1.8, 20.1) = 30.7, p < 0.01, ηp2 = 0.736) 
for N1 amplitudes and N1-P2 amplitudes (electrode 
group: (F(3,33) = 22.9, p < 0.01, ηp2 = 0.675; tone type: 
(F(1,11) = 18.3, p = 0.001, ηp2 = 0.624). Post hoc analy-
ses revealed similar effects for both dependent variables, 
where the crown had the lowest values, followed by the 
left and right regions, which were not significantly dif-
ferent from each other, and the front electrodes had the 
largest values (p < 0.05). For tone type, target tones pro-
duced greater amplitudes than standard tones (p < 0.05). 
Similarly for peak latencies, there was a significant main 
effect of electrode group (F(3,33) = 14.7, p < 0.01, ηp2 = 
0.571) on P2 latency and N1-P2 latency (F(3,33) = 16.7, 
p < 0.01, ηp2 = 0.603). Post hoc analyses revealed that 
the crown had the shortest latencies, followed by left 
and right regions, and front with the longest latencies (p 
< 0.05). A depiction of significant results are shown in 
Fig. 4.

Part B—alternative target pulse clicktrain
Grand averages for low, regular, and high target wave-
forms are presented in Fig. 5. A single electrode is shown 
to represent the different electrode groups: 17 for front, 
19 for crown, 13 and 14 for left and right, respectively. 

A summary of amplitudes and latencies for low and high 
target tones are presented in Table 2 as means and stand-
ard deviations for each electrode group. Based on the 
findings from Part A, the statistical analyses were limited 
to N1, P2, and N1-P2 peak-to-peak amplitudes and laten-
cies for target tones. Low target tones (250 Hz) did not 
produce significantly different results than target tones 
in the regular tests (1000 Hz), however high target tones 
(4000 Hz) were found to produce significantly greater P2 

Fig. 3  Grand averages depicting waveforms for target (black) and standard (gray) tones for single channels representing the front (Ch 17), crown 
(Ch 19), left (Ch 13), and right (Ch 14) for regular auditory oddball tests

Table 1  Summary table of means and standard deviations 
of  N1 and  P2 amplitudes (µV) and  latencies (ms) 
for the target and standard tones across electrode groups

Electrode 
group

Amplitude (µV) Latency (ms)

Target Standard Target Standard

N1 Front − 3.5 (2.0) − 2.9 (1.5) 92.1 (11.8) 89.2 (11.2)

Crown − 1.0 (1.3) − 0.6 (0.9) 87.0 (13.1) 88.0 (15.7)

Left − 2.0 (1.3) − 1.8 (1.2) 93.5 (12.9) 91.6 (13.4)

Right − 2.3 (1.5) − 1.7 (1.1) 91.7 (17.4) 90.3 (16.4)

P2 Front 2.0 (2.2) 1.5 (1.3) 147.9 (18.3) 150.5 (25.5)

Crown 1.7 (1.4) 1.1 (1.1) 124.4 (13.3) 128.9 (19.6)

Left 2.1 (1.8) 1.6 (1.3) 140.1 (17.7) 139.3 (20.3)

Right 2.1 (1.7) 1.7 (1.2) 138.3 (20.8) 137.4 (24.2)
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amplitudes (Fig.  6) than regular target tones (1000  Hz) 
for the right electrode group (t[4] = -4.03, p = 0.016).

Discussion
A two-tone auditory oddball paradigm was used to char-
acterize ERPs in healthy 4-week old piglets. N1 and P2 
local minima and maxima were the two features of the 
electrical potential waveform that had consistent nega-
tive and positive values occurring at N90 (82–92 ms) and 
P140 (124–150 ms), respectively. It is possible that these 
waveform responses are congruent to the N130 at 132 ms 
and the P160 at 156 ms reported for a two-tone auditory 
oddball paradigm studied in older (12–14 months) male 
Gottigen minipigs [37]. In the 4-week old piglets stud-
ied here, infrequent target stimuli elicited greater wave-
form responses than frequent standard tones. This is in 
accordance with findings reported by Arnfred, Lind [37] 
for older male minipigs, and also in children 4–13 years 
old [16, 38] and adults [18] for passive listening to an 
auditory oddball paradigm.

Regional differences were observed for N1 and P2 
responses as noted by the averaged values for each elec-
trode group. Electrodes capturing activity at the front 
had the greatest waveform responses, followed by the 
right and left regions, with the crown region demonstrat-
ing the smallest waveforms. These findings are consistent 
with those found in humans, where the fronto-central 

Fig. 4  Significant findings for electrode group with N1 amplitude 
(a), P2 latency (b), and N1-P2 amplitude (c) and latency (d). All 
comparisons were statistically significant except where ‘*’ denotes 
statistically similar results. Significant findings for tone type are 
illustrated for N1 (e) and N1-P2 (f) amplitudes with significant 
differences are illustrated with an overlaying bar

Fig. 5  Grand average waveforms for Low (250 Hz), Regular (1000 Hz) and High (4000 Hz) target tones
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region reflected the greatest activity for target tones in 
an auditory oddball paradigm [13, 14, 18]. Similarly, this 
finding was also consistent in older (12–14 month) male 
Gottingen minipigs where frontal channels demonstrated 
greater activity than posterior channels [39]. Activity 
observed in the left and right electrode groups in this 
study may be reflective of involvement of the early cen-
tral auditory pathways and auditory cortex in response to 
the identification and perception of sound [12]. The left 
and right electrode groups are regions close to the ears 
and auditory cortex where auditory regions have been 
reported to be located near the lateral fissure in minia-
ture swine [40]. Reduced activity at the crown is likely 
due to the electrodes covering this region are located 
behind the ears and toward the back of the neck. It is 
unlikely that cortical activity related to auditory process-
ing are detected in this area (Fig. 2).

Regular auditory oddball tests were collected for three 
non-consecutive days for each animal in this cohort. 
There were no significant main effects of test day; there-
fore, two-tone auditory oddball tests elicit consistent 
day-to-day responses and these methods area repeat-
able in 4-week old piglets. Furthermore, results from the 
alternative target tone tests showed that modifying the 
pitch of the target tone was not found to influence the 
N1 amplitudes; however, the higher 4000 Hz target tones 

produced greater P2 amplitudes than the 1000 Hz target 
tones. Like the N1, the P2 has also been associated with 
early attention allocation and is also considered a reliable 
indicator of auditory stimulus processing in humans [12].

A direct limitation of this study are that ERP data 
were extracted from a subset of 20 electrodes from the 
total 32 that were concurrently used to collect EEG. 
The method of peak amplitude and latency extraction 
corresponding to N1 and P2 features of the middle 
latency response are common to the greater auditory 
processing literature, however, due to the complexity of 
neural processes and cognition, these results may only 
capture a single aspect of multifaceted auditory pro-
cessing. In addition, age specific responses have been 
noted in the human literature where the amplitude 
and latency responses are a function of age and brain 
maturation, where responses for adults are unique from 
infants, children, and adolescent age groups [41–43]. It 
is likely that auditory responses in piglets are similarly 
affected by age and maturational processes, therefore, 
these findings are specific to the 4-week old piglet. The 
4-week old piglet is a common animal model used to 
represent traumatic brain injury in children due to par-
allels in brain composition during early development 
[30, 33, 44].

Conclusions
An auditory oddball paradigm elicited consistent N1 
and P2 middle latency responses in healthy 4-week 
old piglets. Infrequent target tones elicited greater N1 
and N1-P2 amplitudes than standard tones, which is in 
alignment with other pig studies and the human litera-
ture for children and adults. Greater activity toward the 
front electrode group in 4-week old piglets is consistent 
with maximal fronto-central activity associated with 
auditory deviant sound processing in humans. There 

Table 2  Summary table of means and standard deviations of N1 and P2 amplitudes (µV) and latencies (ms) for the low 
and high target tones across electrode groups

Electrode group Amplitude (µV) Latency (ms)

Low (250 Hz) High (4000 Hz) Low (250 Hz) High (4000 Hz)

N1 Front − 2.8 (1.7) − 3.3 (1.4) 96.2 (4.9) 90.4 (7.3)

Crown − 0.7 (1.7) − 0.1 (1.1) 92.8 (16.3) 87.4 (3.5)

Left − 1.7 (1.4) − 1.8 (1.4) 92.8 (23.0) 93.9 (9.0)

Right − 1.8 (1.2) − 1.2 (0.7) 98.7 (7.4) 89.7 (11.8)

P2 Front 1.4 (0.6) 3.2 (1.3) 155.6 (10.6) 157.1 (30.2)

Crown 1.7 (1.2) 2.2 (1.1) 132.4 (23.2) 135.3 (15.3)

Left 1.8 (1.1) 3.4 (1.4) 151.0 (24.2) 156.9 (26.6)

Right 2.0 (0.8) 4.0 (1.2) 155.3 (12.9) 146.8 (13.0)

Fig. 6  P2 amplitude results for regular 1000 Hz target tone and high 
4000 Hz target tone for the front electrode group. Significance is 
indicated with an overlaying bar
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were no effects of test day; therefore, two-tone auditory 
oddball tests elicit consistent day-to-day responses. 
This clinical assessment was successful in the immature 
large animal model.
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