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Abstract 

Background:  Alzheimer’s disease (AD) is a primary cause of dementia in ageing population affecting more than 35 
million people around the globe. It is a chronic neurodegenerative disease caused by defected folding and aggre-
gation of amyloid beta (Aβ) protein. Aβ is formed by the cleavage of membrane embedded amyloid precursor 
protein (APP) by using enzyme ‘transmembrane aspartyl protease, β-secretase’. Inhibition of β-secretase is a viable 
strategy to prevent neurotoxicity in AD. Another strategy in the treatment of AD is inhibition of acetylcholinesterase. 
This inhibition reduces the degradation of acetylcholine and temporarily restores the cholinergic function of neu-
rons and improves cognitive function. Monoamine oxidase and higher glutamate levels are also found to be linked 
with Aβ peptide related oxidative stress. Oxidative stress leads to reduced activity of glutamate synthase resulting 
in significantly higher level of glutamate in brain. The aim of this study is to perform in silico screening of a virtual 
library of biaryl scaffold containing compounds potentially used for the treatment of AD. Screening was done against 
the primary targets of AD therapeutics, acetylcholinesterase, β-secretase (BACE1), Monoamine oxidases (MAO) and 
N-Methyl-D-aspartate (NMDA) receptor. Compounds were screened for their inhibitory potential by employing 
molecular docking approach using AutoDock vina. Binding energy scores were embodied in the heatmap to display 
varies strengths of interactions of the ligands targeting AD.

Results:  Several ligands showed notable interaction with at least two targets, but the strong interaction with all the 
targets is shown by very few ligands. The pharmacokinetics of the interacting ligands was also predicted. The interact-
ing ligands have good drug-likeness and brain availability essential for drugs with intracranial targets.

Conclusion:  These results suggest that biaryl scaffold may be pliable to drug development for neuroprotection in 
AD and that the synthesis of further analogues to optimize these properties should be considered.
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Background
Alzheimer disease (AD) is the primary cause of demen-
tia worldwide. Currently, more than 35 million people 
are suffering from this disease around the globe. By the 
year 2050, the diseases burden is excepted to raise four 
times i.e. almost 1 out of 85 persons will be suffering 
from AD [1]. The major pathological hallmarks of AD 

include widespread neuronal and synaptic loss, exces-
sive presence of astrocytes, and aggregation of multiple 
proteinaceous deposits for instance β-amyloid plaques 
and neurofibrillary tangles (NFT) [2]. The number of 
hypotheses are proposed along the years to describe the 
root cause of AD such as the production of β-amyloid, 
cholinergic hypothesis, excitotoxicity and oxidative stress 
hypothesis [3] as summarized in Fig.  1. Senile plaques 
are the main and distinguished neurological feature of 
the AD directly related to its onset and progression [4]. 
The production of amyloid beta (Aβ) takes place by the 
proteolytic cleavage of beta-secretase protein on amyloid 
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precursor protein (APP) whereas in AD, a pathogenic 
mutations affects the protease cleavage sites in APP and 
aid its cleavage [5]. The Aβ are mainly divided into two 
isoforms, based upon the length of amino acids, Aβ of 
40 amino acid residues (Aβ40) and Aβ of 42 amino acid 
residues (Aβ42) are the two isoforms. Although Aβ42 
differ in only 2 amino acids, it is much more neurotoxic 
and aggregates faster as compared to Aβ40. In the cer-
ebrospinal fluid (CSF) presence of Aβ42 is a well-known 
biomarker of AD, and is used both in AD research and 
increasingly in clinical practice [6]. The increased level of 
Aβ42 as compare to Aβ40 has been generally considered 
to play a critical role. The increased Aβ42/Aβ40 ratio is 
closely related to presenilin mutations correlating to early 
onset of AD [7]. Although Aβ40 is several-fold more 
abundant in the brain Aβ42 is the major and sometimes 
exclusive component in amyloid plaques, due to its more 
aggregation prone nature [7].

AD is also characterized by the cholinergic deficit in 
the affected brain. The acetylcholine-releasing neurons 
especially there cell bodies which lied in basal forebrain 
degrades selectively in AD affecting cognitive functions 
and memory as these neurons are vital in the normal 
functioning of cerebral cortex and related structures. In 
AD there is a modification and alteration in polymor-
phism of acetylcholinesterase (AChE) in brain [8]. An 

increased amount of AChE levels around the Aβ plaques 
and NFT is commonly reported feature of AD. The cur-
rent therapy of AD is mainly based on the use of AChE 
(AChE-I) inhibitors. The effect of these AChE-I is modest 
and transient due to up-regulation of AChE activity fol-
lowing chronic AChE-I therapy [9].

Another mechanism by which AD can develop is by 
excessive presence of the reactive oxygen species (ROS) 
in the mitochondria. This rise in ROS is due to aging or 
stress and if the antioxidant system of the body fails to 
cope with this condition AD may develop. The role of 
oxidative stress in AD is evident from the fact that brain 
of these patients shows a substantial oxidative damage 
[10]. Monoamine oxidase (MOA), is also involved in AD 
by increasing ROS in brain. MAO and its isoenzymes i.e. 
MAO-A and MAO-B are liable for the catalysis of bio-
genic amines, like serotonin, dopamine and norepineph-
rine so its inhibition results in an augmented level of 
neurotransmitters in the CNS [11].

Similarly, the key excitatory neurotransmitter gluta-
mate which is involved in synaptic plasticity and learn-
ing, is also linked to AD. Dysfunction in the glutamate 
system is found to be linked with Aβ peptide linked oxi-
dative stress. Oxidative stress leads to reduced activity 
of glutamate synthase resulting in significantly higher 
level of glutamate in brain [12]. The over-activation of 

Fig. 1  Pathogenesis of Alzheimer disease (AD) and therapeutic intervention are shown. (1) Acetylcholine (ACh) inhibitor activation leads towards 
ACH deficit in effected brain and drugs that inhibits acetylcholinesterase (Donepezil). (2) Aβ generation and aggregation and its sites for therapeutic 
intervention. All the drugs currently used in this regard is in clinical trial phase. (3) Oxidative stress; ROS can aggravate and trigger AD, Antioxidant 
maybe helpful. (4) Glutamatergic dysfunction and excitotoxicity play role in pathogenesis of AD. NMDA receptor antagonist (Memantine) are the 
treatment option
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N-methyl-D-aspartate receptor (NMDA) receptor due 
to excessive glutamate leads to the continuous calcium 
ions (Ca2+) influx into the nerve cells, generating a slow 
excitotoxicity at post synaptic level ultimately leading to 
a gradual neurodegenerative effect in AD patients [13]. 
Thus, NMDA receptor antagonists could be advanta-
geous therapeutically in the management of AD.

Inhibition of these targets individually with currently 
approved or developing drugs has been proved rela-
tively unsuccessful at reversing the progression of AD. A 
likely solution lies in a multi-pharmacological approach 
to altered activities of numerous of these targets at the 
same time, particularly those associated with the pro-
gression of the disease. Such multiple target drugs devel-
oped for AD have targeted two or more of known targets 
(cholinesterases, BACE1, MAO, NMDA) or have disease 
progression retarding properties, such as metal chelation, 
reduce oxidative stress or have anti-inflammatory poten-
tial, or can prevent Aβ or tau aggregation [14]. Ligands 
for drug targets combinations should be assessed against 
disease progression to define best possible combinations.

Molecular docking; a computational technique, is used 
for the estimation of the binding affinity between two 
molecules like the protein–protein and ligands-protein 
[15]. Virtual screening or computer-aided drug design 
(CADD) combined with wet lab techniques contributes 
towards the development of new drug molecules [16]. 
CADD is particularly useful especially in three major 
areas: (1) selection of most suitable compounds from 
large libraries of possibly actives compounds (2) Addi-
tion of an appropriate functional groups in the lead 
compounds for making it more suitable for new drug 
development (3) By adding pharmacophore features, 
designing the new molecules from a target structure. In 
light of current study the interactions of selected com-
pounds with the various targets of AD was determined, 
using docking and in silico absorption, distribution 
metabolism and excretion (ADME) pharmacokinetics 
studies [15].

Methods
Preparation of protein targets
The target proteins i.e. AChE (4EY7) [17], BACE-1 
(2HM1) [18], MAO-A (2Z5X) [19] and NMDA (1PBQ) 
[20] were selected. These X-ray crystallographic struc-
tures were downloaded from protein data bank (PDB). 
Preparation of all the protein structure was done in Chi-
mera by using ‘Dockprep’ workflow [21]. The preparation 
includes addition of hydrogen to the protein, assign-
ment of bond orders, and unnecessary associated mol-
ecules deletion. Addition of side chains was done, partial 
charges were assigned, disulphide bonds were made and 
missing atoms were added. Optimized Potentials for 

Liquid Simulations (OPLS_2005) force field was used 
for energy minimization. The active sites of the proteins 
were determined by the co-crystallized ligands.

Ligand dataset preparation
The zinc database (zinc15.docking.com) was searched for 
the biaryl scaffold. The hits were filtered and only those 
compounds were selected for further processing which 
was ever tested in  vivo (neither in animal model nor in 
man) and available for free sale. The ids of compounds 
along with their binding affinities are also present in the 
attached file (Additional file 1). Resulting molecules were 
downloaded in mol2 format. Ligand’s pre-processing was 
done, using Ligprep, the formation of tautomers and ioni-
zation states (pH 7.0 ± 2.0) using Epik [22]. An addition of 
hydrogen atoms was also done, neutralization of charged 
groups and geometry of the ligands were also optimized.

Virtual screening: binding mode analysis
Computational analysis was performed by firstly down-
loading mol2 structures of the ligands from ZINC 
database and then converted to PDBQT formats after 
assigning Gastegier charges and merging non-polar 
hydrogens by using AutoDock Tools 1.5.4. PyRX software 
was used for virtual screening. Both Autodock and Auto-
Dock Vina are included in the PyRX [24]. The binding 
site for docking analysis was determined by the position 
of the co-crystallized ligand. The grid box was centered 
on the experimentally docked ligands with the dimension 
given in Table  1. Docking was performed using Auto-
Dock Vina (version 1.1.2) by considering all the bonds 
in the ligands as rotatable and the proteins as the rigid 
structures. Rest of the parameters were kept as default 
and docking scores were calculated by the default scoring 

Table 1  Grid box centre and  dimension for  docking 
of the ligands against target protein

Where: acetylcholinesterase (4EY7), beta-secretase cleavage enzyme (2HM1), 
monoamine oxidase (2Z5X) and N-methyl-D-aspartate receptor receptor (1PBQ)

Protein Grid box centre Grid box dimensions

4EY7 X: − 2.91 X:59.75

Y: − 40.11 Y:61.25

Z: 30.86 Z:72.51

2HM1 X: 16.08 X:57.15

Y: − 0.07 Y:68.97

Z: 10.02 Z:48.99

1PBQ X: 2.535 X:55.36

Y: 39.35 Y:49.88

Z: − 17.65 Z:48.12

2Z5X X: 34.6965 X:88.4415

Y: 28.131 Y:75.9847

Z: − 20.0943 Z:62.8238
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function [23]. The best binding modes of the ligands were 
exported as mol2 files and the interaction of the best 
binding modes with the protein target were investigated 
by using discovery studio visualizer. Ligands with best 
binding scores were redocked using the glide/SP docking 
algorithm in Maestro https​://pubs.acs.org/doi/10.1021/
jm030​6430. The binding poses generated by glide were 
matched with the best binding poses from AutoDock 
Vina using an RMSD cutoff of Å. All RMSD values were 
calculated using the python script “rmsd.py”. Data war-
rior was used for data handling and visualization [25]. To 
find out compounds with multi-target binding efficiency, 
the heatmap was generated using chemmines numerical 
clustering tool based on binding scores [26].

Pharmacokinetic parameters
The calculation of the physiochemical properties of the 
drugs is done by SwissADME. Physiochemical proper-
ties like, octanol/water partition coefficient (XPlogPo/w), 
compound’s molecular weight (MW), the number of 
hydrogen bond acceptors (accptHB), hydrogen bond 
donors (donorHB), and percentage human oral absorp-
tion, blood brain penetration was predicted. Violations 
of Lipinski’s rule of five by any drug was also analyzed. 
Based on these molecular descriptors, the intestinal 
absorption and blood–brain barrier penetration were 
represented by using a BOILED-egg model [27].

Result
The key focus of the current study is to identify new 
compounds containing biaryl scaffold for the treatment 
of AD. Around, 107 compounds were screened using in 
silico molecular docking technique by AutoDock Vina. 
Out of the screened compounds, ZINC000003872600, 
ZINC000002010548, ZINC000000390492 and 
ZINC000043014847 interacted significantly with cho-
sen protein targets of AD in the chosen active sites. The 
docking score was obtained in the range of − 10.8 to 
− 6.4 for AChE (4EY7), − 8.7 to − 6.1 in BACE 1 (2HM1), 
− 10.5 to − 6.3 in MAO-A (2Z5X), and − 8.7 to − 6.2 
with NMDA (1PBQ). Among these compounds, against 
each target the best hit was selected on the basis of dock-
ing score and binding energy. The best binding ligands 
were redocked using glide and the docking scores of the 
comparable binding poses were determined. Comparison 
between target protein with potent known drugs/inhibi-
tors in the crystal structures for binding modes and the 
molecular interactions was done. The binding energies of 
both hydrophilic as well as hydrophobic interacting resi-
dues and their bond length of the best predicted mode 
with each protein target residue are shown in Table  2. 
The heatmaps based on binding scores are presented in 
Fig. 2.

Validation of docking
The co-crystallized ligands were extracted from the 
PDB files of target proteins. Theses extracted ligands 
were re-docked into the proteins by using same param-
eters and workflow to validate the reliability and repro-
ducibility of the docking results. The RMSD values of 
the docked ligand and the co-crystallized ligand was 
calculated by using all atoms in discovery studio visu-
alizer v17.2. The docked ligand and the co-crystallized 
structures almost superimpose (Fig.  3) each other and 
RMSD values ranges from 0.0184 to 0.0992 Å. These 
results indicate that the docking experiment has pro-
duced correct docking poses thus validating the results.

Molecular interaction of ZINC000000593414 
with acetylcholinesterase (4EY7)
Against AChE, the lowest binding energy was observed 
with ZINC000000593414 with binding energy of—10.8 
which is comparable with known inhibitor donepezil 
whosebinding energy was − 11.9. ZINC000000593414 
forms hydrogen bonding with Tyr124, Ser125 and 
Trp286 (PAS residue); pi–pi stacking with Ser293 
and Trp341 (PAS residue). Pi-sigma interactions were 
observed with Trp86 (quaternary ammonium binding 
locus) and Phe338 (Fig. 4). When redocked with glide, 
the binding score of the best binding pose was found to 
be − 8.547.

Molecular interaction of ZINC000002010548 
with β‑secretase cleavage enzyme (2HM1)
The BACE-1 ligand interaction largely depends on the 
conformation of the active site residues, which consisted 
of the catalytic dyad (Asp32 and Asp 228), composition 
of the 10 s loop consist of residues from 9 to 14, flap con-
sisting of 67–77 amino acid and all other residues within 
8 Å from aspartates. With BACE-1, ZINC000002010548 
exhibited lowest binding energy of—8.7. Hydrogen bond-
ing was formed with Thr329, Thr72, Thr231, Arg235 and 
Ser327. Salt bridge with Asp32 (catalytic residue) was 
observed at Phe108 (Fig. 5). When redocked using glide, 
the docking score was − 5.443.

Molecular interaction of ZINC000000390492 
with monoamine oxidase (2Z5X)
The results of MAO-A docking showed the least docking 
score at − 10.5 with ZINC000000390492. Docking results 
showed hydrogen bonding with Tyr69, Pi–Pi stack with 
Phe352 and Tyr407 and Pi-alkyl interactions with Ile335 
(Fig. 6). When redocked by using glide, the docking score 
was found to be − 10.498.

https://pubs.acs.org/doi/10.1021/jm0306430
https://pubs.acs.org/doi/10.1021/jm0306430
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Molecular interaction of ZINC000043014847 
with N‑methyl‑D‑aspartate receptor receptor (1PBQ)
ZINC000043014847 showed the best docking score 
of—8.6 whereas DCKA showed a docking score of − 8.7. 
Hydrogen bonding was observed between the ligand 
and Gly93, Thr94, Asn107, Arg131 whereas pi–pi stack-
ing was observed with Phe92 of 1PBQ (Fig.  7). When 
redocked by using glide, the docking score was found to 
be − 6.233.

Prediction of pharmacokinetic properties
In regards to prediction of pharmacokinetic properties, 
none of the compounds in current study demonstrate 
violation of the Lipinski’s rule of five. The percentage 
of oral absorption of drug in human was calculated on 
the scale of 0–100% to predict the oral absorption of 
the drug. Absorption of more than 80% was considered 
as good absorption whereas any compound having less 
than 25% absorption is poor. According to this principle; 
all the drugs when given via oral route have medium to 
high absorption. Brain availability by crossing the blood 
brain barrier was also found to be from medium to high 

as represented by boiled egg model (Fig. 8). This model 
gives a nice and simple graphical representation of intes-
tinal absorption and brain penetration of the ligands as 
a function of lipophilic nature (WLOGP) and polarity of 
the molecules (TPSA).

Discussion
Molecular docking is an important technique. It is actu-
ally not a standalone technique but works best if treated 
as a supplementary technique along with other in sil-
ico methods as well as in vitro and in vivo experiments 
[28]. While there is a dire need for new pharmaceutical 
research in this field, in silico drug analysis is an effective 
and promising tool for discovering therapeutic utility of 
both new and already existing drugs [29]. There are num-
ber of examples of repurposed drugs which were discov-
ered by the in silico approach and are now being used in 
many diseases [23] including AD [30].

The main focus of the present study is to signify 
importance of docking analysis and identify compounds 
containing biaryl scaffold for the management of AD. 
About, 107 compounds were screened using docking. 
Among screened compounds significantly interacting 

Table 2  The structures generated through  ChemDraw and  binding scores of  the  best predicted compounds 
along with their Zinc-ID against each protein target

Where: acetylcholinesterase (4EY7), beta-secretase cleavage enzyme (2HM1), monoamine oxidase (2Z5X) and N-methyl-D-aspartate receptor receptor (1PBQ) 
(Structures are drawn fromChemDraw)

Binding score

Zinc_ID Structure 4EY7 2HM1 2Z5X 1PBQ

Control − 11.9 − 9.1 − 7.5 − 8.7

ZINC000043014847

S

O

O H
N

O

N
H

OH

− 10.3 − 8.4 − 8.3 − 8.6

ZINC000002010548

F

O

O O

O

− 10.3 − 8.7 − 10.1 − 8.3

ZINC000000593414
H
N

S

O

O

N
H

S

O

O

− 10.8 − 7.3 − 8.2 − 8

ZINC000000390492 O

FF

O

O-

− 10.1 − 7.9 − 10.5 − 7.9
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compounds with selected protein targets of AD were 
identified.

Some previous studies showed the possible potential 
of marketed antipsychotic drugs against various targets 
associated with AD by using docking approach [23]. Pre-
viously conventional structure-based docking method 
for the identification of drug molecules for BACE were 
largely futile [31]. By using in silico computer-aided drug 
design approaches, the activity of biaryl compounds 
against AD targets BACE1 and BACE2 was also deter-
mined and interestingly it was found that the fused-ring 
compounds are in general more active than the biaryl-
based ligands [32].

In present study 4 targets of AD were chosen. The 
results of docking were firstly validated. As a general 
rule, the success of the docking scoring function is vali-
dated if the conformation of the bound ligand in the crys-
tal structure resembles the conformation of the docked 
ligand [33].

One of the selected targets was AChe. An enzyme Ache 
catalyzes the metabolism of acetylcholine and some other 
choline esters neurotransmitters. Number of well-known 
drugs interact with acetylcholinesterase [34]. The human 

AChE’s active site is 20 Å deep. The active site comprises 
of catalytic site of AChE (Glu334,Ser 203 and His447), 
acyl-binding pocket (Phe297and Phe295), oxyanion hole 
(Ala204, Gly120 and Gly121), quaternary ammonium 
binding locus (Trp86) and finally, PAS (Tyr341, Trp286, 
Tyr124, Tyr72 and Asp74), which groups at the active site 
gorge’s entry [35].

Similarly, monoamine oxidase (MAO) an enzyme 
majorly involves in the oxidation of numerous vital 
monoamine hormones and neurotransmitters such as 
adrenaline, noradrenaline, dopamine, and serotonin [36]. 
There is a hydrophobic cavity in MAO-A which has a vol-
ume of ~ 400 Å. The structure of MAO-A consist of one 
larger cavity or a bipartite cavity depending upon the 
conformation of Phe208, but in this case it fails to work 
as gating residue. The MAO-A has conserved active site 
residues which comprise of a pair of Tyr of the “aromatic 
sandwich” and a Lys-hydrogen bonded to the N(5) posi-
tion of the Flavin i.e. Lys305 in enzyme [37]. There are 
additional non-conserved active site residues primar-
ily Ile180 and Asn181in MAO-A. The Phe208–Ile335 in 
MAO-A is the main factor in controlling the differential 
inhibitor and substrate specificities of these enzymes 

Fig. 2  The heatmaps based on binding scores compounds with multitarget binding efficiency. The heatmap was generated using chemmines 
numerical clustering tool based on binding scores. A heat map analysis of binding constants of 107 in vivo tested compounds screened against 
acetylcholinesterase (4EY7), beta-secretase cleavage enzyme (2HM1), monoamine oxidase (2Z5X), N-methyl-D-aspartate receptor receptor (1PBQ) 
by AutoDock tool. In the gradient ruler, blue colour indicated strong binding (Docking score − 11), while red colour indicate weak binding (Docking 
score − 6)
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[38]. In MAO-A, the least docking score was − 10.5 with 
ZINC000000390492 and in the case of known inhibitor, 
Hermine, the docking score was − 7.5.

The inhibition of BACE1 through the development of 
selective and potent inhibitors has been in a limelight in 
the quest for treatment of AD. BACE an enzyme play-
ing vital role in the proteolytic cleavage of APP is an 

Fig. 3  Docking validation by redocking the ligands to their corresponding molecular targets as indicated by their PDB IDs i.e. a acetylcholinesterase 
(4EY7), b beta-secretase cleavage enzyme (2HM1), c monoamine oxidase (2Z5X) and d N-methyl-D-aspartate receptor receptor (1PBQ). The original 
conformation of each ligands is displayed in grey, stick while docked poses are represented in yellow stick

Fig. 4  Docking analysis of ZINC000000593414 with acetylcholinesterase (4EY7) depicting the ligand and protein interaction at the active site. The 
secondary structure of the protein is shown as a solid grey ribbon. Multicolor dots and lines represent key residues. In each fig a represents Two 
dimensional (2D) interaction between ligand and macromolecule and the legend represents the interaction type between the amino acid of the 
macromolecule and the ligand atoms. The b shows the three-dimensional (3D) binding of drug with macromolecule
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important target of AD management [39]. The BACE-1 

ligand ZINC000002010548 exhibited highest docking 
score of—8.7 and known inhibitor LY2886721 had dock-
ing score of − 9.1 in the previous study [40]

Another target, for protein 1PBQ an ion channel pro-
tein and glutamate receptor found in nerve cells, has 
vital interacting residues with 5,7-Dichlorokynurenic 
acid (DCKA); a selective NMDA antagonist. DCKA: 

The co-crystallized ligand interacts with Pro124, Ser180, 

Arg131 and Thr126. 1PBQ’s hydrophobic pocket has fol-
lowing amino acid residues: Phe92, Phe16, Phe250 and 
Trp223 [41].

Pharmacokinetic properties of drugs is a significant 
parameter in drug selection and to determine its util-
ity as a clinically beneficial agent. Docking models have 
been simulated as a useful alternative to wet lab research 

Fig. 5  Docking analysis of benperidol and anisoperidone with beta-secretase cleavage enzyme (2HM1) depicting the ligand and protein 
interaction at the active site. The secondary structure of the protein is shown as a solid grey ribbon. Multicolor dots and lines represent key 
residues. In each fig a represents Two dimensional (2D) interaction between ligand and macromolecule and the legend represents the interaction 
type between the amino acid of the macromolecule and the ligand atoms. The b shows the three-dimensional (3D) binding of drug with 
macromolecule

Fig. 6  Docking analysis of melperone with monoamine oxidase (2Z5X) depicting the ligand and protein interaction at the active site. The 
secondary structure of the protein is shown as a solid grey ribbon. Multicolor dots and lines represent key residues. In each fig a represents Two 
dimensional (2D) interaction between ligand and macromolecule and the legend represents the interaction type between the amino acid of the 
macromolecule and the ligand atoms. The b shows the three-dimensional (3D) binding of drug with macromolecule
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Fig. 7  Docking analysis of anisopirol with N-methyl-D-aspartate receptor receptor (1PBQ) depicting the ligand and protein interaction at the active 
site. The secondary structure of the protein is shown as a solid grey ribbon. Multicolor dots and lines represent key residues. In each fig a represents 
Two dimensional (2D) interaction between ligand and macromolecule and the legend represents the interaction type between the amino acid of 
the macromolecule and the ligand atoms. The b shows the three-dimensional (3D) binding of drug with macromolecule

Fig. 8  The boiled egg model to graphically represent the intestinal absorption and the brain penetration of the ligands as function of lipophilicity 
and polar surface area of the molecules. The molecules (represented as dots) within the yellow yolk are well penetrated within the brain with good 
intestinal absorption. The molecules represented with blue dots could be a substrate for P-Glycoprotein, reducing their absorption and penetration 
within brain
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procedures especially at initial stages were chemical 
structures are numerous but resources are scarce [42]. 
Hence, in present study the physio-chemical factors 
were determine to assess the ADME properties of the 
drugs. Lipinski’s rule of five required that the drug must 
have molecular weight of 500  Da or less, donorHB ≤ 5, 
accptHB ≤ 10 and octanol–water partition coefficient 
log P < 5. If drug follow these rules then it’s considered as 
an orally active drug. The molecules which fails to follow 
more than one of above stated rules may face difficulty 
with bioavailability. In current study none of the com-
pounds is violating Lipinski rule of 5. Therefore, in silico 
computational analysis has been able to identify some 
encouraging compounds which may prove to be useful 
in the management of AD. Further research is needed in 
this regard.

Conclusion
AD is a complex disease involving many different path-
ways and drug targets, for instance, AChE, BACE-1, 
MAO-A and NMDA. In addition to these targets, anti-
inflammatory and antioxidant drugs are also proved to be 
beneficial. Several molecules belonging to different chem-
ical classes have already been developed against these 
individual targets to relieve the symptoms of this ailment 
but a multi-target approach is required. In this context 
the present study explored the potential of biaryl scaffold 
to inhibit these multiple targets. Of all the compounds 
screened, biaryl sulphonamides were found to be the 
top candidate for the cholinergic (AChE), beta-secretase 
cleavage enzyme (BACE-1), monoaminergic (MAO-A) 
and glutamatergic system (NMDA). Further analogues 
can also be computationally designed and tested against 
these druggable targets. Hence, virtual screening can suc-
cessfully identify auspicious compounds which might be 
worthwhile therapeutically in AD.

Additional file

Additional file 1. The ids of compounds searched from zinc data base 
along with their binding affinities.
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