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Juvenile stress induces behavioral 
change and affects perineuronal net formation 
in juvenile mice
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Abstract 

Background:  Many neuropsychiatric disorders develop in early life. Although the mechanisms involved have not 
been elucidated, it is possible that functional abnormalities of parvalbumin-positive interneurons (PV neurons) are 
present. Several previous studies have shown that juvenile stress is implicated in the development of neuropsychiatric 
disorders. We aimed to clarify the effects of juvenile stress on behavior and on the central nervous system. We inves-
tigated behavioral abnormalities of chronically-stressed mice during juvenilehood and the effect of juvenile stress on 
PV neurons and WFA-positive perineuronal nets (PNNs), which are associated with vulnerability and plasticity in the 
mouse brain.

Results:  Due to juvenile stress, mice showed neurodevelopmental disorder-like behavior. Juvenile stressed mice did 
not show depressive-like behaviors, but on the contrary, they showed increased activity and decreased anxiety-like 
behavior. In the central nervous system of juvenile stressed mice, the fluorescence intensity of WFA-positive PNNs 
decreased, which may signify increased vulnerability.

Conclusion:  This study suggested that juvenile stressed mice showed behavioral abnormalities, resembling those 
seen in neuropsychiatric disorders, and increased brain vulnerability.
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Background
Many neuropsychiatric disorders are diagnosed at 
puberty [1]. Approximately half of adult neuropsychiatric 
disorders begin in adolescence [2, 3]. However, the cause 
of the onset remains unclear. It has been reported that the 
onset of neuropsychiatric disorders such as anxiety, neu-
rosis, depression, post-traumatic stress disorder (PTSD), 
and schizophrenia are associated with stress exposure 
during juvenilehood [4, 5]. In recent years, many children 
worldwide are experiencing stress [6]. Chronic stress is 
known as a major risk factor for the onset of numerous 
neuropsychiatric disorders including depression [7–9].

Human behavior is greatly affected by the environ-
ment both during childhood and adolescence [10–12]. 
The maturing brain is very sensitive to stress [13–15]. At 
this period, stressful events are related to later social and 
emotional maladjusted behaviors [16]. In animal experi-
ment models, animals stressed in early childhood show 
increased anxiety-like behavior [17], decreased spatial 
memory [18], increased corticosterone secretion [19], 
and altered hippocampal size after maturation [18, 20].

Many common early-stage stress experiment mod-
els have focused on the period during lactation through 
maternal deprivation and separation. However, the devel-
opment of the pup brain continues after weaning, and 
brain development is affected by environmental factors. 
In this study, we focused on mice after weaning. At this 
time, mice already act independently, and some areas of 
the central nervous system have matured, but many other 
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brain areas have not [21–23]. Mice at postnatal week 4 
are considered to be in the state before human juvenile-
hood, and their brain is still in the developmental stage 
[14]. Although the mechanisms involved in stress-related 
neuropsychiatric disorder development during juvenile-
hood and adolescence have not been elucidated, it seems 
that environment, physiology, and heredity are all impli-
cated in a complicatedly interrelated manner [24]. Using 
animal experiment models, we are just beginning to 
understand how juvenile organs react to stress [25].

It has been suggested that functional abnormalities in 
parvalbumin-positive interneurons (PV neurons) are 
one cause of anxiety, neurosis, depression, and schizo-
phrenia [26–32]. PV neurons are GABAergic interneu-
rons [33–35]. In the central nervous system, GABAergic 
interneurons mature after birth, and abnormalities in 
GABAergic interneurons have been reported in numer-
ous neuropsychiatric disorders [36–40]. PV neurons 
mature depending on environmental inputs around juve-
nilehood [41–43]. PV neurons form inhibitory synapses 
at the cell body and axon initial segments of pyramidal 
cells, and regulate the synchronous firing of pyramidal 
cells [44, 45]. Dysfunction of PV neurons causes mental 
disease-like behavior in mice [46, 47].

After birth, the cell bodies, proximal dendrites, and 
axon initial segments of many PV neurons are covered 
with special extracellular matrix molecules [48, 49]. This 
extracellular matrix molecules are called the perineu-
ronal net (PNN). The PNN consists of hyaluronic acid, 
link proteins, tenascin, and aggrecan, versican, brevican, 
and neurocan, which are lecticans belonging to the fam-
ily of chondroitin sulfate proteoglycans [50–53]. Lectin 
Wisteria floribunda agglutinin (WFA), which binds to 
N-acetylgalactosamine residues, is widely used to visual-
ize PNNs [54]. Although the function of PNNs has not 
been clarified, it has been shown that they exert neuro-
plasticity control and have neuroprotective effects [55]. 
It is thought that the critical period ends by the forma-
tion of PNNs around PV neurons [56, 57]. Loss of PNNs 
around PV neurons restores plasticity, and reduces the 
excitability of PV neurons [58–60]. PNNs also protect 
PV neurons from oxidative stress [61, 62]. Altered PNNs 
have been reported postmortem in the brains of patients 
with schizophrenia and depression [63, 64], and mice 
with PNN dysfunction show behavioral abnormalities, 
such as those seen in neuropsychiatric disorders [65–67].

Behavioral abnormalities after maturation due to early 
life stress have been examined in detail, but behavioral 
anomalies in juvenilehoods under stress have not been 
clearly defined. If functional and structural anomalies 
are maintained until maturity, it is necessary to diag-
nose young people who are experiencing stress as soon 
as possible. Therefore, we aimed to clarify behavioral 

abnormalities in mice that had experienced stress during 
juvenilehood. In addition, we investigated the influence 
of stress on both PV neurons and PNNs in each brain 
region (frontal cortex, motor cortex, and the hippocam-
pus) in juvenile mice.

The PV immunostaining-delineated CA2 neurons 
have not distinguishable differences in cell morphol-
ogy compared with CA1 and CA3 regions. Hippocam-
pal area CA2 is excluded from present study. Studies of 
neuropsychiatric disorders have implicated PV neuronal 
abnormalities in region-specific dysfunction and not 
in the sensory cortex. These reports indicate that there 
is region-specific vulnerability of PV neurons to neu-
ropsychiatric conditions in the cortex. The motor cortex 
on the same section as the frontal cortex was examined 
simultaneously.

We physically and socially stressed mice for 10  days, 
which were at different developmental periods: early 
childhood (from postnatal day 21–30) and maturation 
phase (from postnatal day 81–90) on the same stress 
schedule. Therefore, in this study, we aimed to clarify the 
influence of stress on juvenile behaviors and on the for-
mation of developing PV neurons and PNNs.

Methods
Animals
All animal experiments were performed in accordance 
with the U.S. National Institutes of Health (NIH) Guide 
for the Care and Use of Laboratory Animals (NIH Pub-
lication No. 80-23, revised in 1996) and were approved 
by the Committee for Animal Experiments at Kawasaki 
Medical School Advanced Research Center. All efforts 
were made to minimize the number of animals used and 
their suffering. The day of birth was designated as postna-
tal day (P0). Animals were purchased from Charles River 
Laboratories (Kanagawa, Japan) and housed in cages 
(5  animals/cage) with food and water provided ad  libi-
tum under a 12 h light/dark cycle at 23–26 °C. We used 
C57BL/6N male mice aged P21 (juvenile) and P71 (adult). 
Mice between the age of P0 and P28 are termed juvenile 
and mice between P28 and P56 should be termed adoles-
cence. Since the adolescent period is quite ambiguity in 
rodents, we chose to start stress during what is consid-
ered to be the juvenile period (P21–30). Adult mice were 
exposed to stress from P71 to P80. The animals were ran-
domly assigned to either the control (n = 10) or stress 
groups (n = 10). All behavioral tests were conducted in 
behavioral testing rooms between 08.00 and 18.00 h dur-
ing the light phase of the circadian cycle. Similar to previ-
ous reports, we performed behavioral tests [68, 69]. After 
the tests, all equipment was cleaned with 70% ethanol 
and super hypochlorous water to prevent bias based on 
olfactory cues. Behavioral tests were performed two tests 
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each day (Fig. 1). It takes 3 h between tests. Mice are back 
in their home cage in the colony.

Stress
Animals in the stress groups were subjected to stress 
once a day according to a protocol similar to that used 
in previous studies [70–73]. Animals were subjected to 
stress using the following procedures: (1) tail-pinch for 
10 min; (2) forced restraint in a plastic tube for 3 h with-
out access to food or water; (3) hot air (approx. 38  °C) 
blown using a hair dryer for 10 min; (4) overnight illumi-
nation; (5) food and water deprivation for 8 h; (6) damp 
sawdust (200  mL water absorbed in sawdust bedding). 
One stressor was applied daily (Fig. 1). Control mice were 
housed in a separate room, having no contact with the 
stressed mice.

General health and neurological screening
Physical characteristics, including body weight, rec-
tal temperature, and presence of whiskers or bald hair 
patches, were recorded. The righting, whisker twitch, 
and ear twitch reflexes were also evaluated. Neuromus-
cular strength was examined using the grip strength and 
wire hang tests according to a previous study [74]. A grip 
strength meter was used to assess forelimb grip strength. 
Mice were lifted and held by the tail so that their fore-
paws could grasp a wire grid; they then were pulled back-
ward gently until they released the grid. The peak force 
applied by the mouse forelimbs was recorded in Newtons 
(N). We performed this test at both P21 and P30.

Elevated plus maze test
The apparatus consisted of two open arms (8 × 25  cm) 
and two closed arms of the same size with 30-cm high 
transparent walls. The arms were constructed of white 
plastic plates and were elevated to a height of 40  cm 

above the floor. Arms of the same type were located 
opposite each other. Each mouse was placed in the cen-
tral square of the maze, facing one of the closed arms, 
and was allowed to move freely between the two arms 
for 10 min. The number of arms entries, distance traveled 
(m), and percentage of time spent in the open arms were 
recorded on video and analyzed using video tracking 
software (ANY-MAZE, Stoelting Co., Wood Dale, IL).

Social interaction test
The apparatus consisted of a rectangular parallelepiped 
(30 × 60 × 40 cm). Each mouse was placed in the box for 
10 min and allowed to freely explore for habituation. In 
the sociability test, an unfamiliar C57BL/6N male mouse 
(stranger mouse) that had no previous contact with the 
subject mouse was placed into one of the transparent 
cages (7.5 × 7.5 × 10 cm, which had several holes with a 
diameter of 1  cm) located at the corners of each lateral 
compartment. The stranger mouse was enclosed in the 
transparent cage, which allowed nose contact between 
the bars but prevented fighting. The subject mouse was 
placed in the center and allowed to explore the entire box 
for a 10-min session. One side of the rectangular area 
was identified as the stranger area and the other as the 
empty area. The amount of time spent in each area and 
around each cage during the 10-min sessions was meas-
ured. Data were recorded on video and analyzed using 
the ANY-MAZE software.

Porsolt forced swim test
The apparatus for the Porsolt forced swim test consisted 
of four Plexiglas cylinders (20 cm height × 10 cm diam-
eter). The cylinders were filled with water (23 °C) up to a 
height of 7.5 cm. Mice were placed into the cylinders, and 
their behavior was recorded over a 6-min test period. In 
this test, we detect ‘immobile period’ when the animals 
stop struggling for one second or more. Immobility last-
ing for less than 1.5  s was not included in the analysis. 
Data acquisition and analysis were performed automati-
cally using the ANY-MAZE software.

Tail suspension test
Each mouse was suspended 60  cm above the floor by 
the tail in a white plastic chamber by an adhesive tape 
placed < 1  cm from the tip of the tail. Its behavior was 
recorded for 6  min. Images were captured through a 
video camera, and immobility was measured. Similar to 
the Porsolt forced swim test, immobility was evaluated 
using the ANY-MAZE software.

Locomotor activity test
For measurements of locomotor activity, the mice were 
acclimated to the single housing environment for 2.5  h. 

day 1 2 3 4 5 6 7 8 9 10

EPM

TSPS

YM SI

LA

stress tests

sacrifice

GHNS

GHNS

Fig. 1  Experimental time schedule. Animals in the stress groups 
were subjected to stress once a day from P21 (juvenile) or P71 (adult). 
Animals were subjected to two behavioral tests per day. EPM elevated 
plus maze, PS Porsolt forced swim, YM Y-maze, TS tail-suspension, SI 
social interaction, LA locomotor activity, GHNS general health and 
neurological screening
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Locomotor activity data were measured using a photo-
beam activity system (ACTIMO-100; BRC Co., Nagoya, 
Aichi, Japan), and activity counts were recorded at 
10-min intervals.

Y‑maze test
Spatial working memory was measured using a Y-maze 
apparatus (arm length: 40 cm, arm bottom width: 3 cm, 
arm upper width: 10 cm, height of wall: 12 cm). Each sub-
ject was placed at the center of the Y-maze field. Visual 
cues were placed around the maze in the testing room 
and kept constant throughout the testing sessions. Mice 
were examined with no learning prior. The number of 
entries and alterations was recorded and analyzed auto-
matically using the ANY-MAZE software. Data were col-
lected for 10 min [75, 76].

Statistical analysis of behavioral tests
Data were analyzed with one-way analysis of variance 
(ANOVA) followed by Tukey’s test, two-way repeated 
measures ANOVA followed by Fisher’s LSD test, Stu-
dent’s t test, or paired t test. A p value < 0.05 was regarded 
as statistically significant. Data are shown as box plots.

Tissue preparation
Following behavioral experiments, we deeply anesthe-
tized the animals with a lethal dose of sodium pento-
barbital (120  mg/kg, i.p.) and transcardially perfused 
them with ice-cold phosphate-buffered saline (PBS) for 
2 min and then 4% paraformaldehyde in PBS (pH 7.4) for 
10 min (10 mL/min). In all cases, we dissected the brains 
and post-fixed them overnight with 4% paraformalde-
hyde in PBS at 4  °C and cryoprotected them by immer-
sion in 15% sucrose for 12 h followed by 30% sucrose for 
20 h at 4 °C. To cut sections, we froze the brains in O.C.T. 
Compound (Tissue-Tek; Sakuma Finetek, Tokyo, Japan) 
using dry ice-cold normal hexane and we prepared serial 
coronal sections of 40-µm thickness using a cryostat 
(CM3050S; Leica Wetzlar, Germany) at − 20 °C. We col-
lected sections in ice-cold PBS containing 0.05% sodium 
azide.

Immunohistochemistry
The cryostat sections were treated with 0.1% triton X-100 
in PBS for 15  min at 20  °C. After three washes in PBS, 
the sections were incubated with 10% normal donkey 
serum (ImmunoBioScience Co., WA) in PBS for 1  h at 
20 °C. Sections were again washed three times in PBS and 
incubated with biotinylated WFA (B-1355, Vector Labo-
ratories, Funakoshi Co., Tokyo, Japan; 1:200) and a pri-
mary antibodies in PBS overnight at 4 °C. After washing 
in PBS, the sections were incubated with streptavidin-
conjugated to Alexa Fluor 594 (S11227, Thermo Fisher 

Scientific, Tokyo, Japan; 1:1000) and secondary antibod-
ies in PBS at 20 °C for 2 h. The sections were rinsed with 
PBS and mounted onto glass slides using Vectashield 
mounting medium (H-1400, Vector Laboratories). The 
prepared slides were stored at 4 °C until imaging.

Antibodies
The following primary antibodies were used: mouse 
anti-parvalbumin (clone PARV-19, P3088, Sigma-
Aldrich Japan, Tokyo, Japan, 1:1000), mouse anti-NeuN 
(MAB377, Millipore, 1:1000), rabbit anti-Iba-1 (019-
19741, Wako, Osaka, Japan, 1:1000), and mouse anti-
Cat-315 (MAB1581, Millipore, Tokyo, Japan, 1:1000). The 
following secondary antibodies were used: Alexa Fluor 
488-conjugated goat anti-mouse IgG (ab150113, Abcam, 
Tokyo, Japan; 1:1000), FITC-conjugated anti-mouse IgM 
(sc-2082, Santa Cruz, Texas, USA, 1:1000), and Texas 
Red-conjugated goat anti-rabbit IgG (TI-1000, Vector 
laboratories, 1:500).

Microscopic imaging and quantification of labeled neurons
To quantify the number of PV- WFA-, and Cat-315+-pos-
itive neurons, confocal laser scanning microscopy of the 
stained sections was used according to a similar proto-
col [77]. Images (1024 × 1024 pixels) were saved as TIFF 
files using the ZEN software (Carl Zeiss Oberkochen, 
Germany). A 10 ×, or 20 × objective lens and a pinhole 
setting corresponding to a focal plane thickness of less 
than 1  μm were used. Data were quantified and pre-
sented according to the cortical layer profiles (L2/3 and 
L5/6) based on fluorescence Nissl staining (NeuroTrace 
435/455 blue, N-21479, Molecular Probes, Eugene, OR). 
All confocal images were converted to TIFF files and ana-
lyzed with the Image J software (National Institutes of 
Health, Bethesda, MD; http://rsb.info.nih.gov/nih-image​
/). The number of neurons was quantified for at least 
three coronal sections per animal. The stained neurons or 
PNNs (defined as neurons with a soma size over 60 μm2) 
were manually tagged and counted within the area of 
interest. Neuronal density estimates (cells/mm2) were 
also calculated. The data were averaged per mouse. For 
analyzing PV-, WFA-, and Cat-315+-positive PNN mor-
phologies, samples were randomly selected, and high-
magnification images using a 100 × objective lens were 
acquired.

Both fluorescent intensity and soma rea of PV neu-
rons were quantified using at least three coronal sec-
tions per animal. Eight-bit grayscale images were 
captured using a digital camera. The ellipse circum-
scribing the PV-positive soma and WFA-positive 
PNNs was traced manually, and the gray levels for PV 
and WFA labeling were measured using the ImageJ 
software. We avoided fluorescence saturation by 

http://rsb.info.nih.gov/nih-image/
http://rsb.info.nih.gov/nih-image/
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adjusting the exposure time and gain. The same cap-
ture conditions were used for all sections. Background 
intensity was subtracted using the unstained portions 
of each section. Data are presented as mean ± SEM. 
The slides were coded and quantified by a blinded 
independent observer.

Data analysis of histological quantifications
Data are expressed as the mean ± SEM of five animals 
per group. Statistical significance was determined 
by a two-way ANOVA followed by the Bonferroni t 
test. The statistical significance threshold was set at 
p < 0.05.

Results
Juvenile stress induces changes in body weight gain
We compared the general health and neurological char-
acteristics of the juvenile-stressed and control groups. 
We found significant decreases in body weight and 
grip strength between juvenile-stressed and control 
group mice on P30 (Fig. 2a, stress × time: F1,32 = 16.185, 
p = 0.003; time in control: F = 398.249, p < 0.0001; 
time in stress group: F = 219.906, p < 0.0001; stress 
on P30: F = 29.248, p < 0.0001, Fig.  2c, stress × time: 
F1,32 = 16.046, p = 0.0003; time in control: F = 51.697, 
p < 0.0001; time in stress group: F = 12.371, p = 0.0013; 
stress on P30: F = 21.798, p = 0.0001). There were no 
significant differences in body temperature between 

P80

P30

ad
ul

t
bo

dy
 w

ei
gh

t (
g)

bo
dy

 te
m

pe
ra

tu
re

(C
)

gr
ip

 s
tr

en
gt

h 
(c

N
)

General Health

stress (n=10)
control (n=10)

p=
0.080

ju
ve

ni
le

bo
dy

 w
ei

gh
t (

g)

bo
dy

 te
m

pe
ra

tu
re

(C
)

gr
ip

 s
tr

en
gt

h 
(c

N
)

d e fp=
0.0609

a b c

P21

P71

P21 P30

P71 P80

P30

P80

p=0.003 p=0.0003

p=0.0189 p=0.7377

stress (n=10)
control (n=10)

^ ^
^

*̂
*

^
^

Fig. 2  Results of the general health and neurological screening in the stress and control groups. Juvenile: body weight before and after stress (a), 
body temperature (b), and grip strength before and after stress (c). Adult: body weight before and after stress (d), body temperature (e), and grip 
strength before and after stress (f). All data are presented as box plots. *Significant difference from control mice (p < 0.05). ^p < 0.05 versus first 
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juvenile-stressed and control group mice on P30 
(Fig. 2b, t14 = 2.1448, p = 0.080).

There were no significant differences in body weight, 
body temperature, and grip strength between adult-
stressed and control group mice on P80 (Fig.  2d, 
stress × time: F1,36 = 6.046, p = 0.0189; time in control: 
F = 1.303, p = 0.2613; time in stress group: F = 1.886, 
p = 0.1782; stress on P80: F = 3.440, p = 0.0719, 
Fig.  2e, t18 = 2.1009, p = 0.0609; Fig.  2f, stress × time: 
F1,36 = 0.114, p = 0.7377; time in control: F = 14.059, 
p = 0.0006; time in stress group: F = 4.183, p = 0.0482; 
stress on P80: F = 1.190, p = 0.2826).

Juvenile stress did not change anxiety‑like behaviors
We evaluated anxiety-like behavior in juvenile stressed 
mice. In the elevated plus maze test, we observed a sig-
nificant increase in the total distance traveled in the 
juvenile-stressed compared with the control group mice 
(Fig.  3a, t18 = 2.1009, p = 0.0344). There were no signifi-
cant differences in the number of total entries into the 
arms, and the percentage of time spent in the open arms 
between the juvenile-stressed and control group mice 
(Fig.  3b, t18 = 2.1009, p = 0.4545; Fig.  3c, t18 = 2.1009, 
p = 0.6605).

Next, we evaluated anxiety-like behavior in adult 
stressed mice. there were no significant differences in 
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Fig. 3  Results of the elevated plus maze test in the stress and control groups. Juvenile: distance traveled (a), the number of open arm entries (b), 
and time spent in the open arms (c). Adult: distance traveled (d), the number of open arm entries (e), and time spent in the open arms (f). All data 
are presented as box plots. *Significant difference from control mice (p < 0.05). The p values were calculated by Student’s t test (a–f)



Page 7 of 21Ueno et al. BMC Neurosci  (2018) 19:41 

p=0.4488 p=0.0061
)

%(
ytilibo

m
mi im
m

ob
ili

ty
 (%

)

p=0.1430

)
%(

ytilibo
m

mi im
m

ob
ili

ty
 (%

)

Porsolt forced swimTail suspension
ad

ul
t

ju
ve

ni
le

a b

c d
p=0.9526

Block of 1 min

1 2 3 4 5 6 1 2 3 4 5 6
control stress

Block of 1 min

1 2 3 4 5 6 1 2 3 4 5 6
control stress

Block of 1 min

1 2 3 4 5 6 1 2 3 4 5 6
control stress

Block of 1 min

1 2 3 4 5 6 1 2 3 4 5 6
control stress

stress (n=10)
control (n=10)

stress (n=10)
control (n=10)

^

^ ^ ^ ^
^ ^

^ ^ ^

^ ^ ^
^ ^

^

^ ^ ^ ^

*
*

^ ^ ^ ^ ^ ^ ^ ^ ^ ^

^
^

^
^

^

^

^
^ ^ ^

Fig. 4  Results of the tail-suspension test and Porsolt forced swim test in the stress and control groups. Juvenile: percentage of immobility time 
in each 1-min period (a) in the tail-suspension test. percentage of immobility time in each 1-min period (b) in the Porsolt forced swim test. Adult: 
percentage of immobility time in each 1-min period (c) in the tail-suspension test. Percentage of immobility time in each 1-min period (d) in the 
Porsolt forced swim test. All data are presented as box plots. *Significant difference from control mice (p < 0.05). ^p < 0.05 versus first block; *p < 0.05 
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the number of total entries, total distance traveled, and 
percentage of time spent in the open arms between 
the adult-stressed and control group mice (Fig.  3d, 
t18 = 2.1098, p = 0.2037; Fig.  3e, t18 = 2.1098, p = 0.3996; 
Fig. 3f, t18 = 2.1098, p = 0.9651).

Juvenile stress reduced depressive‑like behaviors
We evaluated depressive-like behavior in juvenile 
stressed mice. In the tail-suspension test, there were no 
significant differences in the percentage of immobility 
time in each 1-min period during the 6-min test period 
between the juvenile-stressed and control group mice 
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Fig. 5  Results of the locomotor activity test in the stress and control groups. Juvenile: spontaneous locomotor activity in each 10-min period (a). 
Adult: spontaneous locomotor activity in each 10-min period (b). All data are presented as box plots. *Significant difference from control mice 
(p < 0.05). The p values were calculated by two-way repeated measures ANOVA (a, b)

(See figure on next page.)
Fig. 6  Results of the Social interaction test in the stress and control groups. Juvenile: time spent in the area (a), total distance traveled (b), number 
of entries around the cage (c), and time spent around the cage (d). Adult: time spent in the area (e), total distance traveled (f), number of entries 
around the cage (g), and time spent around the cage (h). All data are presented as box plots. *Significant difference from control mice (p < 0.05). The 
p values were calculated by two-way ANOVA (a, c, d, e, g, h), one-way ANOVA (b, f), and paired t test (between the same group in a, c, d, e, g, h)



Page 9 of 21Ueno et al. BMC Neurosci  (2018) 19:41 

Social interaction test
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(Fig.  4a, stress × time: F1,102 = 0.578, p = 0.4488; time 
in control: F = 22.813, p < 0.0001; time in stress group: 
F = 13.792, p < 0.0001). In the Porsolt forced swim test, 
the juvenile stressed mice spent significantly less time 
immobile in each 1-min period during the 6-min test 
period than did the control mice (Fig.  4b, stress × time: 
F1,108 = 7.830, p = 0.0061; time in control: F = 16.349, 
p < 0.0001; time in stress group: F = 16.883, p < 0.0001).

In the tail-suspension test, we found no significant dif-
ferences between adult stressed and control mice (Fig. 4c, 
stress × time: F1,108 = 2.176, p = 0.1430; time in control: 
F = 66.558, p < 0.0001; time in stress group: F = 50.135, 
p < 0.0001). In the Porsolt forced swim test, during the 
6-min test period, there were no significant differences in 
the percentage of immobility time in each 1-min period 
in the adult stressed than in the control mice (Fig.  4d, 
stress × time: F1,108 = 0.004, p = 0.9526; time in control: 
F = 11.520, p < 0.0001; time in stress group: F = 12.582, 
p < 0.0001).

Juvenile stress increased activity in a new environment
There were no significant differences in locomotor activ-
ity during the 150-min period between the adult juve-
nile stressed and control mice (Fig.  5a, F1,210 = 1.200, 
p = 0.2746; Fig. 5b, F1,210 = 1.207, p = 0.2732). For the first 
30-min, we observed a significant increase in the loco-
motor activity in the juvenile-stressed compared with the 
control group mice (Fig.  5a, for the first 30-min; stress 
effect, F1,42 = 12.750, p = 0.0009; Fig.  5b, for the first 
30-min; stress effect, F1,42 = 1.476, p = 0.2313).

Juvenile stress showed abnormal social behavior
In the social interaction test, we found several dif-
ferences between juvenile stressed and control mice 
(Fig.  6a, F1,36 = 3.434, p = 0.072; Fig.  6c, F1,36 = 20.774, 
p < 0.0001; Fig. 6d, F1,36 = 0.116, p = 0.735). Control mice 
spent a significantly longer time in the area containing 
the novel (stranger) mouse in a transparent cage than in 
the area containing the empty cage (Fig. 6a, t9 = −2.147, 
p = 0.060), but a similar amount of time in both around 
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Fig. 7  Results of the Y-maze test in the stress and control groups. Juvenile: total distance traveled (a), total number of arm entries (b), total 
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cages (Fig.  6d, t9 = −1.695, p = 0.124). Control mice 
increased the number of entries around the cage contain-
ing the stranger mouse than around empty cage (Fig. 6c, 
t9 = −4.839, p = 0.001). In contrast, juvenile stressed mice 
spent a similar amount of time in both areas (Fig.  6a, 
t9 = −0.781, p = 0.455), and had similar contact time 
with both cages (Fig.  6c, t9 = −3.783, p = 0.004). During 
the 10-min period, juvenile stressed mice spent signifi-
cantly more time around the cage containing the stranger 
mouse than around the empty cage (Fig. 6d, t9 = −1.638, 
p = 0.136). There were no significant differences in the 
total distance traveled between juvenile stressed and con-
trol mice (Fig. 6b, t18 = 2.1009, p = 0.0797). Both control 

and adult stressed mice spent a significantly longer time 
in the area containing the stranger mouse than in the area 
with the empty cage (Fig.  6e, F1,36 = 0.0001, p = 0.993, 
empty area versus stranger area: control, t9 = −3.408, 
p = 0.008, stress, t9 = −3.950, p = 0.003), and spent signifi-
cantly more time around the cage containing the stranger 
mouse than around the empty cage (Fig. 6h, F1,36 = 0.760, 
p = 0.389, empty area versus stranger area: control, 
t9 = −3.244, p = 0.010, stress, t9 = −2.281, p = 0.048). 
Control mice had a similar number of contacts with both 
cages (Fig.  6g, F1,36 = 1.010, p = 0.322, empty area ver-
sus stranger area: control, t9 = −1.200, p = 0.261). Adult 
stressed mice had an increased number of entries around 
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the cage containing the stranger mouse than around the 
empty cage (Fig. 6g, t9 = −5.485, p < 0.0001). During the 
10-min period, there were no significant differences in 
the total distance traveled between adult stressed and 
control mice (Fig. 6f, t18 = 2.1009, p = 0.9639).

Juvenile stress did not change short‑term spatial working 
memory
Short-term spatial working memory was examined 
by monitoring spontaneous alternation behavior in a 
Y-maze. There were no significant differences in these 
measures between the juvenile-stressed and control 
groups in the number of arm entries (Fig. 7b, t18 = 2.1009, 
p = 0.7144), in total alternations (Fig.  7c, t18 = 2.1009, 
p = 0.6303), alternation percentage (Fig. 7d, t18 = 2.1009, 
p = 0.4914), or total distance (Fig.  7a, t18 = 2.1009, 
p = 0.9832), indicating that juvenile stress did not affect 
short-term memory. The results for adult mice were simi-
lar (Fig.  7e, t18 = 2.1009, p = 0.0956; Fig.  7f, t18 = 2.1009, 
p = 0.2891; Fig.  7g, t18 = 2.1009, p = 0.3285; Fig.  7h, 
t18 = 2.1009, p = 0.8414).

Juvenile stress did not change the number of WFA‑positive 
PNNs and PV neurons
We examined the effect of juvenile stress on the number 
of PV neurons and WFA-positive PNNs in several brain 
regions in juvenile stressed and control mice. Both PV 
neurons and WFA-positive PNNs were observed in all 
brain regions analyzed in this study (Fig. 8a–j, a′–j′).

In all brain regions analyzed in this study, there was no 
difference in the density of both PV neurons and WFA-
positive PNNs between the juvenile stressed and control 
mice (Fig. 9a–f). There was no difference in the percent-
age of PV neurons enveloped by WFA-positive PNNs in 

the hippocampus, prefrontal cortex, and primary motor 
cortex between the control and the juvenile stressed mice 
groups (Fig.  9g–i). In all brain regions analyzed in this 
study, the percentage of WFA-positive PNNs was similar 
between the juvenile stressed and control mice (Fig. 9j–l).

Juvenile stress reduces WFA‑positive fluorescence intensity 
but does not change PV‑positive fluorescence intensity
An enlarged image of PV neurons and WFA-positive 
PNNs under the same conditions is shown in Fig.  8, 
revealing that PV fluorescence intensity and WFA fluo-
rescence intensity differed in each brain region (Fig. 8k–r, 
k′–r′). In addition, WFA fluorescence intensity differed 
between the control and juvenile stressed mice.

Analysis of fluorescence intensity revealed that both PV 
and WFA fluorescence intensities differed in each region 
and each cortical layer of the mouse brain (Fig.  10a–f). 
There were no differences in PV fluorescence inten-
sity in the hippocampus, prefrontal cortex, and primary 
motor cortex between control and juvenile stressed mice 
(Fig.  10a–c). In the CA1 region of the hippocampus, 
WFA fluorescence intensity was lower in juvenile stressed 
than in control mice (Fig. 10d). In the dorsal anterior cin-
gulate cortex (dAC) and infralimbic cortex (IL) parts of 
the prefrontal cortex in juvenile stressed mice, WFA fluo-
rescence intensity was lower than in the same region in 
control mice (Fig. 10e). In the L2/3 of the primary motor 
cortex, WFA fluorescence intensity was lower in juvenile 
stressed than in control mice (Fig. 10f ).

Juvenile stress reduces the soma of PV neurons
We also analyzed the soma of PV neurons in several brain 
regions of the juvenile stressed and control mice (Fig. 11). 
We analyzed 575 cells (dAC: L2/3 = 72; L5/6 = 72; PL: 

Fig. 9  Densities of PV neurons and WFA-positive PNNs in juvenile-stressed or control mice. The region-specific patterns of PV neuron density (a–c) 
and WFA-positive PNN density (d–f) in individual regions are shown. The region-specific pattern of the percentage of PV neurons enveloped by 
WFA-positive PNNs (g–i) and the percentage of WFA-positive PNNs that contain PV (j–l) are shown in the individual regions, hippocampus (CA1, 
CA3, and DG) (a, d, g, j), prefrontal cortex (dAC, PL, and IL) (b, e, h, k), motor cortex (c, f, i, l) of control or stress mice. All data are presented as the 
mean ± SEM. *Significant difference from control mice (p < 0.05). The p values indicate two-way ANOVA by Bonferroni t test. Abbreviations are the 
same as those in Fig. 8. a Hippocampus; group: F1,66 = 0.086, region: F2,66 = 6.449, group × region: F2,66 = 0.111. CA1: p = 0.6254. CA3: p = 0.8485. DG: 
p = 0.8626, b prefrontal cortex; group: F1,132 = 0.126, region: F5,132 = 48.755, group × region: F5,132 = 0.966. dAC L2/3: p = 0.3783. dAC L5/6: p = 0.4354. 
PL L2/3: p = 0.9115. PL L5/6: p = 0.2392. IL L2/3: p = 0.9986. IL L5/6: p = 0.1444, c M1; group: F1,44 = 1.140, region: F1,44 = 0.997, group × region: 
F1,44 = 0.002. M1 L2/3: p = 0.4744. M1 L5/6: p = 0.4345, d hippocampus; group: F1,66 = 0.134, region: F2,66 = 11.937, group × region: F2,66 = 0.618. CA1: 
p = 0.09717. CA3: p = 0.2794. DG: p = 0.6745, e prefrontal cortex; group: F1,132 = 0.895, region: F5,132 = 16.458, group × region: F5,132 = 0.476. dAC L2/3: 
p = 0.4839. dAC L5/6: p = 0.3845. PL L2/3: p = 0.9320. PL L5/6: p = 0.3263. IL L2/3: p = 0.4270. IL L5/6: p = 0.5232, f M1; group: F1,44 = 3.048, region: 
F1,44 = 0.636, group × region: F1,44 = 0.144. M1 L2/3: p = 0.3391. M1 L5/6: p = 0.1401, g hippocampus; group: F1,66 = 0.145, region: F2,66 = 1.550, 
group × region: F2,66 = 0.730. CA1: p = 0.6958. CA3: p = 0.2359. DG: p = 0.8866, h prefrontal cortex; group: F1,114 = 0.132, region: F5,114 = 9.911, 
group × region: F5,114 = 6.183. dAC L2/3: p = 0.9590. dAC L5/6: p = 0.2913. PL L2/3: p = 0.3957. PL L5/6: p = 0.1294. IL L5/6: p = 0.4050, i M1; group: 
F1,44 = 3.446, region: F1,44 = 0.060, group × region: F1,44 = 0.6514. M1 L2/3: p = 0.1093. M1 L5/6: p = 0.3271, j hippocampus; group: F1,66 = 0.012, 
region: F2,66 = 3.619, group × region: F2,66 = 0.617. CA1: p = 0.4328. CA3: p = 0.8622. DG: p = 0.4441, k prefrontal cortex; group: F1,116 = 0.886, region: 
F5,116 = 17.793, group × region: F5,116 = 0.905. dAC L2/3: p = 0.9922. dAC L5/6: p = 0.2344. PL L2/3: p = 0.9398. PL L5/6: p = 0.1568. IL L2/3: p = 0.3948. 
IL L5/6: p = 0.2722, l M1; group: F1,44 = 6.832, region: F1,44 = 3.364, group × region: F1,44 = 0.049. M1 L2/3: p = 0.0977. M1 L5/6: p = 0.0512

(See figure on next page.)
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L2/3 = 40, L5/6 = 57; IL: L2/3 = 17, L5/6 = 65; M1: 
L2/3 = 71, L5/6 = 73; CA = 36; CA3 = 36; DG = 36) from 
control mice, and 567 cells (dAC: L2/3 = 66; L5/6 = 73; 
PL: L2/3 = 30, L5/6 = 65; IL: L2/3 = 14, L5/6 = 67; M1: 
L2/3 = 72, L5/6 = 72; CA = 36; CA3 = 36; DG = 36) from 
juvenile stressed mice. In the CA3 of the hippocampus 
and L2/3 of the dAC, the area of the soma of PV neu-
rons was smaller in juvenile stressed than in control 
mice (Fig.  11a, b). No significant differences in soma 
size were found in the PV neurons of the primary motor 

cortex between the control and the juvenile stressed mice 
groups (Fig. 11c).

Juvenile stress did not change the number 
of Cat‑315‑positive PNNs
We examined the effect of juvenile stress on the expres-
sion of aggrecan in several brain regions of the juvenile 
stressed and control mice. The anti-aggrecan antibody 
Cat-315 is frequently used as a marker of aggrecan-
expression on PNNs. We observed more WFA-positive 
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PNNs in the mouse cerebral cortex at P30, while in 
some brain regions, Cat-315-positive PNN was not yet 
expressed at P30 (Fig. 12a–d, a′–d′). We did not observe 
Cat-315-positive PNNs in the mouse prefrontal cortex.

Further, we quantified the number of Cat-315-pos-
itive PNNs in the hippocampus and primary motor 
cortex of the juvenile stressed and control mice 
(Fig.  12e, f ). There was no difference in the density of 
Cat-315-positive PNNs between juvenile stressed and 
control mice (Fig.  12e, f ). To examine whether juve-
nile stress affects Cat-315-positive PNN component 
expression on WFA-positive PNNs in the hippocam-
pus and primary motor cortex of juvenile stressed mice, 
we quantified the percentage of WFA-positive PNNs 
co-localized with Cat-315-positive PNNs, and it was 
similar between the juvenile stressed and control mice 
(Fig. 12g, h).

Juvenile stress did not affect immune activation 
in the central nervous system
To examine whether juvenile stress affects immune acti-
vation in the central nervous system of juvenile stressed 
mice, we observed the morphology of Iba-1-positive 
microglia in the hippocampus, prefrontal cortex, and pri-
mary motor cortex (Fig. 13). Monoclonal antibody Iba-1 
is frequently used as a comprehensive marker of micro-
glia. There was no significant difference in the morphol-
ogy of Iba-1-positive microglia between the control and 
juvenile stressed mice in the hippocampus, prefrontal 
cortex, and primary motor cortex (Fig. 13).

Discussion
In this study, we investigated the influence of stress on 
behavioral abnormalities and on the development of PV 
neurons and WFA-positive PNNs in juvenile and adult 
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mice. We discovered that juvenile stress causes increased 
activity, decreased depressive-like behavior, and social 
deficits in mice. Furthermore, we revealed that the fluo-
rescence intensity of WFA-positive PNNs decreased 
in the central nervous system of juvenile stressed mice. 
These results suggest that juvenile stress affects the devel-
opment of the mouse brain and causes behavioral abnor-
malities different from those seen in the case of stressed 
mature mice.

Juvenile stressed mice had lower body weight and 
decreased grip strength than control mice. Using the pre-
sent stress program, mature mice did not show physical 
changes. Previous studies using juvenile rats and mice 
also reported that body weight decreases owing to juve-
nile stress [70, 78]. Decreased essential enzyme secre-
tion for normal cell growth, decreased DNA synthesis, 
and reduced growth hormone have been implicated as 
the underlying mechanisms [79, 80]. Indeed, in human 
studies, it has been reported that the weight of stressed 
adolescents is lower than that of healthy children [81]. 
Decreased body weight during the developmental stage 
may be an indication that the individual is experiencing 
stress [82].

In the new home cage, juvenile stressed mice showed 
excessive activity in the first 30 min compared to control 
mice. In the case of mature mice, such hyperactive behav-
iors were not observed. In mature mice, the activity level 
decreases or does not change owing to chronic stress 
[83–86]. Hyperactivity is a symptom of neuropsychiatric 
disorders, such as autism spectrum disorder (ASD), and 
attention deficit hyperactivity disorder (ADHD) [87–90].

Juvenile stressed mice had increased total distance 
traveled in the elevated plus maze test compared to con-
trol mice. An increased total distance seen in the elevated 
plus maze test may indicate increased locomotor activ-
ity or maladaptive-like behavior to the new environment 
[91]. However, in juvenile stressed mice, increased activ-
ity was not observed in all behavioral tests. There were 
no significant differences in the percentage of time spent 
in the open arms between the juvenile-stressed and con-
trol group mice in the elevated plus maze test. In stud-
ies using rats, decreased anxiety-like behavior caused by 
juvenile stress has been reported [92, 93]. Further studies 
are needed to elucidate the detailed mechanism.

In this study, depressive-like behavior was decreased 
in juvenile stressed mice in the Porsolt forced swim test, 
compared to control mice. Previous studies reported that 
depressive-like behaviors increase when the animals are 
exposed to chronic stress [94–98]. In this study, stressed 
mature mice did not show depressive-like behavior. This 
result may be due to a shorter stress period than that 
used in other chronically stressed models [78, 99]. Dif-
ferences between juvenile stressed and adult stressed 
mice have also been reported in other studies [78]. It is 
suggested that these are due to differences in released 
corticosterone, hypothalamic–pituitary–adrenal depres-
sive-like behavior function, and brain developmental 
stage [14, 100]. Further studies are needed to elucidate 
the detailed mechanism; however, based on our results, 
it is suggested that juvenile mice are more sensitive to 
stress than adult mice.
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In juvenile stressed mice, social preference to stranger 
mice was reduced compared with control mice. When 
adult mice were exposed to chronic stress, there was no 
reduction in sociability [101, 102]. When genetic abnor-
mality occurs in the energy metabolism of PV neurons, 
social ability is altered in mice [103]. In mice deficient 
in PV protein, abnormal social behavior and decreased 
memory ability, such as those seen in ASD-like behav-
ioral abnormalities was observed [46]. In this study, we 
found WFA-positive PNNs reduced fluorescence inten-
sity around PV neurons in juvenile stressed mice, and it 
is possible that PV neurons were functioning abnormally. 
Therefore, in juvenile stressed mice, social preference to 
stranger mice was altered compared with control mice. 
Chronic stress affects social interaction and function 
of paraventricular nucleus [104, 105]. Even in juvenile 
stressed mice, there may be abnormality in paraventricu-
lar nucleus. Further research is necessary to elucidate 
this mechanism. Abnormal social behavior is a symptom 
of neuropsychiatric disorders, such as ASD, ADHD, and 
schizophrenia [106–108].

Adult mice showed an alternation percentage statisti-
cally above chance level (50% of alternation) whereas 
juvenile mice did not in a Y-maze. This indicates that this 
test is not reliable for juvenile mice.

Juvenile stressed mice showed decreased depressive-
like behavior, increased locomotor activity, and abnor-
mal social behavior compared to control mice. It was 
revealed that chronically stressed juvenile mice showed 
ADHD- and ASD-like behavioral abnormalities. As 
described below, there is a possibility that this behavior 
was caused by PV neuron dysfunction due to decreased 
PNN condense.

In recent years, it has been shown that the balance 
between excitation and inhibition in the central nerv-
ous system is important for normal brain activity, and 
any imbalance is believed to cause neuropsychiatric dis-
order-like behaviors [109, 110]. Abnormalities in the PV 
neurons have been shown postmortem in the brains of 
patients with neuropsychiatric disorders, such as schizo-
phrenia and depression [26, 111]. In experimental mod-
els, pups born to dams stressed during pregnancy show 
behavioral abnormalities, indicating decrease in the 
number of cortical PV neurons and WFA-positive PNNs 
[112]. The development of PV neurons in the sensory 
cortex is dependent on sensory inputs, and the develop-
ment of PV neurons is delayed when sensory inputs are 
deprived [113–116]. In this study, stress was applied to 
juvenile mice, but there was no change in both the num-
ber of PV neurons and the number of WFA-positive 
PNNs in the hippocampus, prefrontal cortex, and pri-
mary motor cortex. It has been reported that Vicia vil-
losa agglutinin (VVA)-positive PNNs increase in the 

WFA Cat-315
M1 L5/6

c c’

d d’

10µm

co
nt

ro
l

ch
ro

ni
c 

st
re

ss

WFA Cat-315
dAC L5/6

a a’

b b’

C
at

-3
15

+
PN

N
s 

/ m
m

2
C

at
-3

15
+

PN
N

s 
/ W

FA
+

PN
N

s 
(%

)

C
at

-3
15

+
PN

N
s 

/ m
m

2
C

at
-3

15
+

PN
N

s 
/ W

FA
+

PN
N

s 
(%

)

e f

g h

0

10

20

30

CA1 CA3 DG

0

50

100

CA1 CA3 DG

0

30

60

L2/3 L5/6

M1

0

50

100

L2/3 L5/6

M1

stress (n=5)
control (n=5)

p=
0.7455

p=
0.3670

p=
0.4347

p=
0.1105

p=
0.082

p=
0.7439

p=
0.7692

p=
0.2881

p=
0.1203

p=
0.2272

Fig. 12  Immunohistochemical detection of Cat-315-positive PNNs 
and WFA-positive PNNs in specific regions of the juvenile-stressed 
and control groups. Representative double immunofluorescence 
images of the dAC L5/6 (a, a′, b, b′), and M1 L5/6 (c, c′, d, d′) are 
shown at high magnification. Double confocal images of Cat-315 and 
WFA reactivity in control (a, a′, c, c′) and stress mice (b, b′, d, d′) are 
shown. Cat-315-positive PNNs are indicated by green fluorescence 
(FITC), and WFA-positive PNNs are indicated by red fluorescence 
(Alexa Fluor 594). Scale bar = 10 μm in d′ (applies to a–d, a′–d′). The 
densities of Cat-315-positive PNN in the hippocampus (CA1, CA3, and 
DG) (e), and primary motor cortex (f) are shown. The percentages 
of Cat-315-positive PNNs co-localized with WFA-positive PNNs 
in the hippocampus (CA1, CA3, and DG) (g), and primary motor 
cortex (h) are shown. All data are presented as the mean ± SEM. 
*Significant difference from control mice (p < 0.05). The p values 
indicate two-way ANOVA by Bonferroni t test. Abbreviations are 
the same as those in Fig. 8. e Hippocampus; group: F1,54 = 1.000, 
region: F2,54 = 14.729, group × region: F2,54 = 1.155. CA1: p = 0.0832. 
CA3: p = 0.7439. DG: p = 0.7692, f M1; group: F1,36 = 0.770, region: 
F1,36 = 42.960, group × region: F1,36 = 0.172. M1 L2/3: p = 0.7455. 
M1 L5/6: p = 0.3670, g hippocampus; group: F1,54 = 5.000, region: 
F2,54 = 0.0339, group × region: F2,54 = 0.9348. CA1: p = 0.2881. 
CA3: p = 0.1203. DG: p = 0.2272, f M1; group: F1,36 = 2.943, region: 
F1,36 = 66.461, group × region: F1,36 = 0.5534. M1 L2/3: p = 0.4347. M1 
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prefrontal cortex of juvenilehood stressed rats within a 
few weeks [93]. This study showed that stress applied to 
juvenile mice for approximately 1  week had no obvious 
influence on the development of PV neurons.

In this study, it was revealed that the fluorescence 
intensity of WFA-positive PNN in juvenile stressed 
mice was decreased in the hippocampus, prefrontal 
cortex, and primary motor cortex compared to control 
mice. The PNN is a structure enriched with a special 
extracellular matrix molecule, and a decreased fluores-
cence intensity is presumed to signify decreased con-
centration or change in PNN components [115, 116]. 
Therefore, it is suggested that there was increased syn-
aptic plasticity and increased vulnerability in the brains 
of juvenile stressed mice compared with control mice. 
When genetic abnormality occurs in the PNNs forma-
tion, social ability is altered in mice [117–119]. It has 
been reported that stress at a young age changes the 
hippocampus structurally and functionally [120, 121]. 
Juvenile stress causes structural and functional changes 
in the hippocampus [120, 121]. Both the hippocam-
pus and prefrontal cortex are areas vulnerable to stress 
[62, 122, 123]. In particular, these areas are sensitive 
to stress during early childhood and adolescence [124, 
125]. It has been reported that experiences in early life 
dramatically alter the structure and function of the 
brain after maturation [13, 122], and the alterations in 
PNN extracellular matrix molecules observed in this 

study could be maintained until maturity [91]. Epide-
miological studies have shown that juvenile stress is 
associated with depression, anxiety, PTSD, and suicide 
development in adulthood [126, 127]. Chronic stress 
activates microglia in the central nervous system [128]. 
However, in this study we have not confirm the acti-
vated microglia image. Further studies are needed to 
elucidate the mechanism of PNN abnormality obtained 
in this study.

Conclusions
The present results indicate that juvenile stress affects 
brain development and causes behavioral abnormali-
ties resembling behaviors linked to developmental dis-
orders in mice. Juvenile individuals are more sensitive 
and respond differently to stress than mature individu-
als. The study results may help establish a method to 
prevent the onset of neuropsychiatric disorders in both 
juvenilehood and adolescence.
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