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Abstract 

Background:  Visuospatial attention is executed by the frontoparietal cortical areas of the brain. Damage to these 
areas can result in visual neglect. We therefore aimed to assess a combination of the greyscales task and repetitive 
navigated transcranial magnetic stimulation (rTMS) to identify cortical regions involved in visuospatial attention pro-
cesses. This pilot study was designed to evaluate an approach in a cohort of healthy volunteers, with the future aim 
of using this technique to map brain tumor patients before surgery. Ten healthy, right-handed subjects underwent 
rTMS mapping of 52 cortical spots in both hemispheres. The greyscales task was presented tachistoscopically and 
was time-locked to rTMS pulses. The task pictures showed pairs of horizontal rectangles shaded continuously from 
black at one end to white at the other, mirror-reversed. On each picture the subject was asked to report which of the 
two greyscales appeared darker overall. The responses were categorized into “leftward” and “rightward,” depending on 
whether the subject had chosen the rectangle with the darker end on the left or the right. rTMS applied to cortical 
areas involved in visuospatial attention is supposed to affect lateral shifts in spatial bias. These shifts result in an altered 
performance on the greyscales task compared to the baseline performance without rTMS stimulation.

Results:  In baseline conditions, 9/10 subjects showed classic pseudoneglect to the left. Leftward effects also 
occurred more often in mapping conditions. Yet, calculated rightward deviations were strikingly greater in magnitude 
(p < 0.0001). Overall, the right hemisphere was found to be more suggestible than the left hemisphere. Both rightward 
and leftward deviation scores were higher for the rTMS of this brain side (p < 0.0001). Right hemispheric distributions 
accord well with current models of visuospatial attention (Corbetta et al. Nat Neurosci 8(11):1603–1610, 2005). We 
observed leftward deviations triggered by rTMS within superior frontal and posterior parietal areas and rightward 
deviations within inferior frontal areas and the temporoparietal junction (TPJ).

Conclusion:  The greyscales task, in combination with rTMS, yields encouraging results in the examination of the 
visuospatial attention function. Future clinical implications should be evaluated.
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Background
Visuospatial attention is processed in particular brain 
areas and fiber tract connections [2, 3]. The complexity 
of interactions becomes apparent by regarding the cor-
responding pathology at malfunction: visual neglect. 
Visual neglect describes a neurological syndrome of 
various forms, degrees, and recovery potential, accom-
panied by a significantly reduced functional outcome 
[4–6]. Classically observed as a consequence of right 
hemispheric parietal lesions, it has also been reported 
after left hemispheric, frontal, temporal, subcortical, and 
combined brain lesions [7, 8]. Research on detecting and 
understanding the underlying mechanisms is essential. In 
tumor patients, mapping prior to resection may prevent 
functional deficits [9, 10]. In stroke patients, mapping 
and timely counteraction may prevent chronification [1, 
11–13].

To learn more about the visuospatial attention func-
tion, it proved insightful to study the conditions of 
healthy adults. As frequently reported, and also meta-
analyzed by Jewell and McCourt in 2000, neurologi-
cally healthy individuals show slight but significant 
leftward errors in line bisection tasks [14–19]. Bowers 
and Heilman described this phenomenon first, calling 
it “pseudoneglect” [20]. Common models ascribe this 
observation to a right-hemispheric dominance in spatial 
attention processing. Imaging studies show preferential 
activity of the right hemisphere during visuospatial task 
performance [16, 21]. Other projects have examined 
the effect of inactivating the right hemisphere and have 
reported both activity shifts to the left hemisphere and 
a resultantly reduced leftward bias [14, 22, 23]. In 2011, 
Thiebaut de Schotten et  al. confirmed anatomical cor-
relates. They were able to link pseudoneglect to a larger 
network of frontoparietal fiber tracts within the right 
hemisphere compared to the left hemisphere [24]. Con-
clusively, Varnava et al. studied the predictability of visu-
ospatial deficits depending on the extent and direction of 
pseudoneglect in the initial state. Reasoning from their 
findings, pseudoneglect and neglect originate from com-
mon or at least coupled mechanisms [25].

Conventional neglect screening in patients is usually 
undertaken using paper-and-pencil tests (e.g., line bisec-
tion). However, to measure biases in perceptual attention 
sensitively, task and setting must be selected appropri-
ately [26]. As for measuring pseudoneglect in healthy 
volunteers, the greyscales task by Mattingley et  al. con-
sistently obtained promising results. First describing the 
test in 1994, they proved its sensitivity in several studies 
and developed an electronic version [27–30]. The task 
consists of tachistoscopic forced-choice decisions on the 
luminance of two greyscales. Analysis results in a score 
reflecting the spatial bias. The score ranges from − 1.00, 

reflecting a maximal leftward bias, to 1.00, for the right 
side, respectively.

Repetitive navigated transcranial magnetic stimulation 
(rTMS) affords an opportunity to accurately and non-
invasively detect cortical areas. rTMS pulses applied to an 
eloquent cortical spot effect a so-called virtual lesion and 
thus temporary inactivation. As a result, we can observe 
performance changes on concurrently conducted neu-
ropsychological tasks. The method is increasingly used to 
map neuropsychological functions such as language and 
calculation; recently, our group also reported its useful-
ness for the mapping of visuospatial attention [31–37]. 
To further pursue this objective, we combined rTMS 
with the aforementioned greyscales task in the same 
cohort of healthy volunteers as investigated before [36]. 
We assumed our subjects present with a basic spatial bias 
that reflects their individual processing balance between 
the left and the right hemisphere. This bias might be 
indexed by the greyscales task. In the presence of pseu-
doneglect, we would obtain leftward baseline scores. Our 
next thought was that temporary inactivation of eloquent 
cortical spots ought to effect an inter-hemispheric mis-
balancing and therefore drive lateral shifts in spatial bias. 
These again might be indexed by the greyscales task. We 
expected particularly significant effects for rTMS applied 
to cortical spots of the right hemisphere. Based on the 
idea of a dominantly active right hemisphere in healthy 
adults with pseudoneglect, we supposed that inactivation 
of spots within this hemisphere would reduce the basic 
leftward bias. Hence we would obtain rightward devia-
tion scores on the greyscales task.

Summarizing, the presented pilot study aims to assess 
a combination of the greyscales task and rTMS in healthy 
volunteers by examining the following hypotheses:

(1)	The greyscales task in tachistoscopic test conditions 
is appropriate and sensitive for testing visuospatial 
attention function via rTMS.

(2)	The resulting brain maps are in accordance with cur-
rent models of visuospatial attention.

Methods
Subjects
The study included five women and five men. All subjects 
were healthy at state and without any history of neuro-
logical or neuropsychological deficit. Their ages ranged 
from 21 to 31 years (median age: 24 years). Inclusion cri-
teria were pure right-handedness (Edinburgh inventory 
score > 40) and German as a first language. Exclusion cri-
teria were general TMS and MRI exclusion criteria (pace-
maker, cochlea-implant, deep brain stimulation) [38]. 
As mentioned in the introduction, this cohort has been 
examined before [36].
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Navigated rTMS
MRI dataset
For MR imaging, we used a 3 Tesla MRI scanner with 
eight-channel phased-array head coil (Achieva 3T, 
Philips Medical Systems, Amsterdam, The Netherlands 
B.V.). Our protocol was comprised of two sequences: 
a T2-weighted FLAIR sequence (TR: 12,000  ms, TE: 
140 ms, voxel size: 0.9 × 0.9 × 4 mm3, acquisition time: 
3 min) and a T1-weighted 3D gradient echo sequence 
(no intravenous contrast administration, TR: 9 ms, TE: 
4 ms, 1 mm3 isovoxel covering the whole head, acquisi-
tion time: 6 min 58 s). The 3D dataset was transferred 
to our rTMS system by DICOM standard.

Mapping setup
For rTMS mapping, we used a Nexstim eXimia Sys-
tem Version 4.3 with NEXSPEECH® module (Nexstim 
Plc., Helsinki, Finland). This system uses a stereotac-
tic camera to link the subject’s 3-D MRI dataset with 
its head via anatomical landmarks and a registered 
“tracker” headband. This meant we were able to visual-
ize the stimulation coil’s real-time position or, rather, 
the induced electric field in the 3D MRI reconstruc-
tion and to selectively and accurately stimulate the 
brain regions [33, 34, 39, 40]. Through the use of 
NEXSPEECH software, we were able to stimulate the 
selected brain regions and time-locked present task 
pictures on a video screen [41].

Mapping parameter
In each subject we determined resting motor thresholds 
(RMT) for the right and left abductor pollicis brevis mus-
cles and individually adjusted the stimulation intensity 
for the respectively contralateral hemisphere [42]. Map-
ping was performed at 100% RMT. rTMS pulses were 
applied as a train of 10 stimuli at a repetition frequency 
of 5 Hz, equaling stimulation trains of 1800 ms. To reach 
a maximal field induction, we placed the coil in ante-
rior–posterior field orientation strictly tangentially to the 
skull, as previously reported [36, 41, 43].

Mapping targets
We tested 52 cortical spots on each hemisphere and dis-
tributed them to brain areas using the cortical parcella-
tion system created by Corina (CPS; Fig. 1, Table 1) [44]. 
We anatomically identified the spots in each subject’s 3D 
MRI reconstruction and marked them as stimulation tar-
gets. First we selected the targets of the left hemisphere. 
We probed each target five times in a block. The order 
of selecting was randomly chosen by the examiner. Next 
we examined the right hemisphere, respectively. We 
redid this procedure once. According to this protocol 
each target was probed 10 times in total. Though, due 
to difficulties in adjusting the stereotactic camera dur-
ing the mapping, some spots got addressed more, some 
less frequent. Certain brain areas had to be omitted: 
Stimulation of the polar and anterior frontal gyri (polFG, 
aSFG, aMFG), the orbital part of the inferior frontal 
gyrus (orIFG), the polar temporal gyri (polTG), and the 

Fig. 1  Mapping targets. Brain areas and cortical spots no. 1–52 according to the cortical parcellation system [44]



Page 4 of 14Giglhuber et al. BMC Neurosci  (2018) 19:40 

anterior middle temporal gyrus (aMTG) is known to 
be too painful to provide reliable results due to muscle 
contractions. Stimulation of the inferior temporal gyrus 
(ITG) is known to be incomparably effective because the 
increased range between the skull and brain tissue causes 
decreased stimulation intensities [39, 45].

The greyscales task
Task setup
During rTMS mapping, the subjects had to perform a 
visuospatial attention task. More specifically, they had to 
handle one task picture during each rTMS stimulation 

train. A video screen (38.1 cm in diameter) was placed at 
viewing distance (about 60 cm nose to screen) in front of 
the examination chair. As evaluated before, we delivered 
rTMS pulses and task pictures synchronously and with-
out delay between rTMS-stimulus-onset and picture-dis-
play [46]. The inter-picture interval was set to 3000 ms.

Task design
Our visuospatial attention task follows the greyscales task 
by Mattingley et  al. [30]. Task pictures were conceived 
as pairs of horizontal rectangles arranged vertically, one 
above another (Fig.  2). They were shaded continuously 
from black at one end to white at the other, shown on a 
grey background, and framed by a black line of 0.7 mm. 
The rectangles of each pair were identical in length and 
shading, solely depicted as mirror images. Uniformly 
30  mm in height, the rectangles varied in length from 
180 to 330  mm (in 30  mm steps). Six lengths per two 
shading orientations each made a task set of 12 different 
task pictures. Pictures were displayed tachistoscopically 
for 50  ms, as reported earlier [18, 36, 47]. The order of 
presentation was randomized by the software. On each 
picture the subject was asked to report which of the two 
greyscales appeared darker overall by saying aloud “top” 
or “bottom.” There was no third option to select “no dif-
ference.” The responses were categorized into “leftward” 
and “rightward,” depending on whether the subject had 
chosen the rectangle with the darker end on the left or 
the right. Subjects performed a baseline session of 72 
pictures without stimulation prior to the rTMS mapping 
session. Both sessions were videotaped for later analysis 
[41, 48].

Evaluation of discomfort
After rTMS mapping, the subjects were asked to evalu-
ate discomfort, separately for the temporal muscle area 
(“temporal”) and for the remainder of the head surface 
(“convexity”). The meter was the visual analogue scale 
(range 0–10): 0 signifying no pain and 10 signifying max-
imal pain.

Data analysis
Data analysis comprised several steps. First we went 
over the subject’s video records and labeled each 
response as “leftward” or “rightward” (as outlined in 
2.4.2). Next we related responses and stimulated cor-
tical spots. For each spot we counted the number of 
effective rTMS stimulations and, among these, the 
number of leftward and rightward responses. Stimu-
lation was deemed effective if a complete train of 10 
rTMS pulses had been applied and if the electric field 
strength at the cortical level had been above 55  V/m 
the entire time [34]. Then scores were computed as 

Table 1  Anatomical names and  abbreviations 
of the cortical parcellation system

Anatomical names and abbreviations according to the cortical parcellation 
system [44]

Abbreviation Anatomy

aITG Anterior inferior temporal gyrus

aMFG Anterior middle frontal gyrus

aMTG Anterior middle temporal gyrus

anG Angular gyrus

aSFG Anterior superior frontal gyrus

aSMG Anterior supramarginal gyrus

aSTG Anterior superior temporal gyrus

dLOG Dorsal lateral occipital gyrus

dPoG Dorsal post-central gyrus

dPrG Dorsal pre-central gyrus

mITG Middle inferior temporal gyrus

mMFG Middle middle frontal gyrus

mMTG Middle middle temporal gyrus

mPoG Middle post-central gyrus

mPrG Middle pre-central gyrus

mSFG Middle superior frontal gyrus

mSTG Middle superior temporal gyrus

opIFG Opercular inferior frontal gyrus

orIFG Orbital part of the inferior frontal gyrus

pITG Posterior inferior temporal gyrus

pMFG Posterior middle frontal gyrus

pMTG Posterior middle temporal gyrus

polFG Polar frontal gyri

polTG Polar temporal gyri

polLOG Polar lateral occipital gyrus

pSFG Posterior superior frontal gyrus

pSMG Posterior supramarginal gyrus

pSTG Posterior superior temporal gyrus

SPL Superior parietal lobe

trIFG Triangular inferior frontal gyrus

vLOG Ventral lateral occipital gyrus

vPoG Ventral post-central gyrus

vPrG Ventral pre-central gyrus
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the difference between the rightward and leftward 
responses divided by the number of effective stimula-
tions (between a range of − 1.00 and 1.00). The subject’s 
task performance in baseline conditions was docu-
mented as the baseline score. Their performance in 
mapping conditions was documented for each particu-
lar spot as the particular deviation score (i.e., the spot’s 
computed score minus the subject’s baseline score). The 
deviation scores, in turn, were categorized as “leftward” 
or “rightward,” depending on whether the scores were 
negative or positive. Then we pooled the information of 
all the subjects per cortical spot as follows:

(1)	We calculated the number of subjects with leftward 
deviation scores and the mean of their scores, i.e., the 
mean of all leftward deviation scores.

(2)	We calculated the number of subjects with rightward 
deviation scores and the mean of their scores, i.e., the 
mean of all rightward deviation scores.

For clearer comparison, we handled all mean devia-
tion scores in terms of their magnitude.

Statistics
The results are listed as mean ± standard deviation plus 
median and range where applicable. Inter-spot com-
parisons were made by the Mann–Whitney U test for 
independent samples. For single-spot analysis (con-
cerning “leftward” vs. “rightward” effects), we used the 
Wilcoxon matched-pairs signed rank test. All tests were 
regarded as significant at a p value < 0.05 (GraphPad 
Prism 6.0, La Jolla, CA, USA).

Results
Subject characteristics
The subject characteristics are listed in Table  2. We 
determined a mean RMT of 33.1 ± 6.4% maximal 
stimulator output, in terms of the left hemisphere, 
and of 32.9 ± 5.9%, in terms of the right hemisphere 
(p = 0.9564). Without stimulation, 9 out of 10 sub-
jects presented with a leftward basic bias; one subject 
showed a rightward basic bias. Taken together, the 
baseline score averaged − 0.59 ± 0.51. rTMS mapping 
was tolerated well, and discomfort was comparable 
for both hemispheres. All subjects were purely right-
handed and showed left-hemispheric dominance.

Number and size of deviations
Tables  3 and 4 provide all computed deviation scores 
on mapping conditions. Additional subject-related 
scores are available as an online resource (Additional 
files 1, 2). First we had a look at the number and size of 
leftward and rightward deviations.

Leftward deviations
Regarding the frequency, leftward deviations occurred 
significantly more often than rightward deviations 
within both the left (p = 0.0077) and the right hemi-
sphere (p < 0.0001). Analyzing the results of both hemi-
spheres together, we found that inter-hemispherically, 
their number was comparable (p = 0.6397). Regarding 
the effect size, rTMS of the right hemisphere elicited 
significantly stronger leftward deviations than rTMS 
of the left hemisphere (p < 0.0001; Fig.  3). Altogether, 
i.e. for both hemispheres, the mean leftward deviation 
scores ranged from 0.06 to 0.40 in magnitude.

Rightward deviations
Consequently, rightward deviations were more rarely 
observed than leftward deviations. Their number was 
comparable for the two hemispheres (p = 0.6352). How-
ever, rightward deviations were strikingly greater in 
magnitude, namely, compared to leftward deviations 
(p < 0.0001) and according to inter-hemispheric com-
parison of the right rather than the left hemisphere 
(p < 0.0001; Fig.  3). The mean rightward deviation 
scores ranged from 0.06 to 1.26 in magnitude.

Cortical distribution of deviations
In what follows we outline the cortical distribution of 
deviations. Figure  4 depicts the leftward deviations in 
blue color and the rightward deviations in red.

Fig. 2  Sample picture from the greyscales task. Greyscales task 
sample. For each picture the subject was asked to report which of 
the two greyscales appeared to be darker overall. The responses were 
categorized into “leftward” and “rightward,” depending on whether 
the subject had chosen the rectangle with the darker end on the left 
or the right, as first described by Mattingley et al. [30]
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Leftward deviations
Regarding the left hemisphere, we observed strong left-
ward effects within parietal areas (vPoG, anG; spots 
no. 28, 40; Fig.  4a). Regarding the right hemisphere, 
the parietal areas (SPL, anG; spots no. 41, 45, 48) were 
as prominent as the middle middle temporal gyrus 
(mMTG; spot no. 35), and as a wide frontal area (mSFG, 
mMFG, pMFG; spots no. 8, 11, 13, 16–18, Fig. 4b).

Rightward deviations
Rightward deviations within the left hemisphere were 
distributed to the posterior superior frontal gyrus (pSFG; 
spot no. 15) and to occipital areas (dLOG, vLOG; spots 
no. 49–50; Fig.  4c). The right hemisphere showed a 
number of striking spots, including the posterior supra-
marginal gyrus (pSMG; spot no. 37), the ventral lateral 
occipital gyrus (vLOG; spots no. 47, 50), temporal areas 
(mSTG, pMTG; spots no. 34, 43, 46), and frontal areas 
(mMFG, trIFG, opIFG; spots no. 4, 5, 9, 13–14; Fig. 4d).

Raw data
We provide our subjects’ raw data as an online resource 
(Additional files 3, 4). Cortical spots of the left hemi-
sphere were stimulated 9.8 ± 0.2 times on average, and 
cortical spots of the right hemisphere were stimulated 
9.7 ± 0.3 times. The number of effective stimulations 
per spot ranged from 5 to 15 for the left hemisphere and 
from 4 to 12 for the right hemisphere.

Discussion
General aims and limitations
We have already reported on the usability of navigated 
rTMS to mimic visual neglect and map correspond-
ing cortical areas in another study [36]. While search-
ing for preferably sensitive visuospatial tasks, we also 
came across literature on the greyscales task and, thus, 
designed the pilot study presented in this manuscript. We 
mainly focused on general feasibility and the broad-rang-
ing examination of both hemispheres, which involved 
accepting a number of limitations. To assess new setups 
and to understand the anatomical correlates of patholo-
gies, it is crucial to examine healthy subjects. Our vol-
unteers formed a small and homogenous healthy cohort, 
which may be seen as a benefit [49]. At the same time, it 
may be seen as a restriction, and the generalizability of 
our findings certainly must be further assessed in relation 
to a higher number of subjects of all ages. Moreover, we 
should be aware of limitations due to our rTMS protocol. 
We tested a wide range of brain areas using a fixed map-
ping template. We stimulated at a frequency of 5 Hz and 
with strict anterior–posterior field orientation. Several 
protocol changes, for example, varying coil angulations, 
could have modified our results [50]. However, we pro-
ceeded comparably to all current mapping standards that 
have been used before [36, 37, 45]. Some cortical spots 
showed a quite small number of effective stimulations. 
However, the mean number of stimulations per spot was 

Table 2  Subject characteristics

Subject characteristics. Resting motor threshold (RMT) as  % of stimulator output. Pain score according to the visual analogue scale (VAS), range from 0 (no pain) to 10 
(maximal pain). Greyscales task baseline score determined on 72 pictures without stimulation, range from − 1.00 (leftward bias) to 1.00 (rightward bias)

Subject RMT Pain score temporal Pain score convexity Greyscales task 
baseline score

Left hemis-phere Right hemis-
phere

Left hemis-phere Right hemis-
phere

Left hemis-phere Right hemis-
phere

1 29 29 2 3 1 1 − 0.61

2 34 29 2 2 1 1 0.78

3 29 33 3 6 1 1 − 0.81

4 43 39 4 4 1 1 − 0.94

5 36 35 3 3 1 1 − 0.94

6 30 28 2 2 0 0 − 0.97

7 45 45 6 6 1 1 − 0.75

8 31 36 4 6 1 3 − 0.47

9 28 26 4 2 3 1 − 0.67

10 26 29 2 4 1 3 − 0.53

Mean 33.1 32.9 3.2 3.8 1.1 1.3 − 0.59

SD 6.4 5.9 1.3 1.7 0.7 0.9 0.51

Median 30.5 31 3 3.5 1 1 − 0.71

MIN 26 26 2 2 0 0 − 0.97

MAX 45 45 6 6 3 3 0.78

p = 0.9564 p = 0.5493 p = 0.8375
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over 9.1 for all subjects with a consistently small vari-
ance. As a last point, we can neither offer any test–retest 
evaluation in the form of a second examination, nor any 
sham-stimulation controls to exclude factors such as con-
centration deficits or unintended remote rTMS effects. 
This should be the next step following this feasibility 
study. With all this in mind, our findings should clearly 
be carefully considered. Nevertheless, as a first step in an 
evaluation, we may rate them as useful and encouraging 
for a further pursuit of this approach.

The greyscales task
Neglect patients are known to develop various mecha-
nisms to compensate for existent pathologies. Hence, 
a true diagnosis requires precise and challenging task 
selections [26]. The greyscales task serves as a sensitive 
tool to measure perceptual biases in healthy subjects and 
in patients and has even been used to uncover deficits 
in patients without apparent visual neglect in conserva-
tive testing [27, 30]. In this study we chose a computer-
ized and tachistoscopic application and conclusively can 
approve this setting. It proved to be applicable and highly 
sensitive. Tachistoscopic task display prevents effects 
such as fixation or eye scanning. As originally conducted, 
our subjects had to respond verbally. We had to take 
into account the fact that left-hemisphere-activation by 
speaking might affect the inter-hemispheric processes 
of visuospatial attention. On the other hand manual 

Table 3  Deviation scores per  cortical spot for  the  left 
hemisphere

Cortical spot “Leftward” deviation scores “Rightward” deviation 
scores

Number 
of subjects

Mean 
of these 
subjects’ 
scores

Number 
of subjects

Mean 
of these 
subjects’ 
scores

1 2 − 0.06 8 0.26

2 5 − 0.13 5 0.15

3 2 − 0.09 8 0.27

4 2 − 0.06 8 0.40

5 3 − 0.23 7 0.34

6 4 − 0.11 6 0.33

7 5 − 0.22 5 0.30

8 2 − 0.26 8 0.34

9 5 − 0.19 5 0.29

10 3 − 0.24 7 0.33

11 4 − 0.13 6 0.28

12 4 − 0.16 6 0.31

13 5 − 0.13 5 0.23

14 7 − 0.17 3 0.31

15 7 − 0.26 3 0.88

16 6 − 0.16 4 0.52

17 7 − 0.15 3 0.36

18 4 − 0.14 6 0.25

19 7 − 0.12 3 0.40

20 5 − 0.22 5 0.42

21 6 − 0.19 4 0.46

22 7 − 0.18 3 0.06

23 6 − 0.22 4 0.20

24 9 − 0.23 1 0.55

25 8 − 0.23 2 0.29

26 7 − 0.24 3 0.17

27 9 − 0.20 1 0.47

28 5 − 0.38 5 0.13

29 6 − 0.31 4 0.20

30 6 − 0.15 4 0.52

31 6 − 0.29 4 0.21

32 5 − 0.18 5 0.36

33 7 − 0.26 3 0.78

34 6 − 0.21 4 0.58

35 5 − 0.32 5 0.61

36 4 − 0.22 6 0.33

37 6 − 0.28 4 0.81

38 4 − 0.22 6 0.46

39 6 − 0.15 4 0.62

40 6 − 0.36 4 0.71

41 6 − 0.15 4 0.39

42 7 − 0.22 3 0.44

43 7 − 0.29 3 0.42

44 5 − 0.18 5 0.67

Results for stimulation of the left hemisphere. Number of subjects with negative 
deviation scores (“leftward”) and mean of their scores. Number of subjects with 
positive deviation scores (“rightward”) and mean of their scores. Outline per 
cortical spot (no. 1–52) plus mean, standard deviation (SD), minimum (MIN), and 
maximum (MAX)

Table 3  (continued)

Cortical spot “Leftward” deviation scores “Rightward” deviation 
scores

Number 
of subjects

Mean 
of these 
subjects’ 
scores

Number 
of subjects

Mean 
of these 
subjects’ 
scores

45 8 − 0.18 2 0.44

46 8 − 0.18 2 0.45

47 7 − 0.24 3 0.38

48 7 − 0.18 3 0.81

49 7 − 0.18 2 0.88

50 7 − 0.24 3 0.85

51 8 − 0.22 2 0.48

52 6 − 0.18 4 0.14

Mean 6 − 0.20 4 0.42

SD 2 − 0.07 2 0.20

MIN 2 − 0.06 1 0.06

MAX 9 − 0.38 8 0.88
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demands have also been reported as affecting results—for 
example, depending on the hand being used to perform 
[18]. A key advantage of the greyscales task is that there 
are no errors to make or be detected, but each response 
contributes to the overall result, representing the sub-
ject’s fully individual tendency with regard to visuospatial 
attention processing. By determining a basic bias prior to 
the rTMS examination and considering all subsequent 
results in relation to this value, there is no usability limi-
tation accompanying the already existent deficits. Here 
we examined a collective of healthy men, but our set-
ting may be applied to patients as well. Moreover, the 
adaptability does not depend on the presence or form of 
pseudoneglect. Our baseline findings are consistent with 
reports on the prevalence of pseudoneglect among young 
adults: 9 out of our 10 subjects naturally tended to the 
left rather than the right [18, 20, 22, 27]. With advanc-
ing age, pseudoneglect is known to shift rightwards [51, 
52]. This fact should be kept in mind for future analysis of 
patient data, but as stated above, it does not restrict the 
applicability. Besides, we should mention that Friedrich 
et al. analyzed the age factor of pseudoneglect by means 
of the greyscales task and found that healthy elderly peo-
ple presented with an even stronger leftward bias than 
their younger participants [53].

rTMS mapping
Across the literature, visuospatial attention is described 
as highly individually distributed, balanced, and sug-
gestible [1, 54–56]. However, we assume that a scaffold 
of cortical spots exists connected anatomically, that they 
are thus available by order of visuospatial function, and 
that they are at least available to be recruited if neces-
sary. As already addressed in 4.1, our rTMS results cer-
tainly should not be considered absolute. There were 
cortical spots with outstanding deviation scores aver-
aged over less than half of our subjects; the other sub-
jects were either not suggestible (but by chance showed 
small deviation scores in the opposite direction) or alter-
natively were suggestible but, as a matter of fact, in the 
opposite direction (Tables 3, 4; Additional files 1, 2, 3, 4). 
One more factor we should mention is the experiment’s 
fairly long time span. A natural leftward bias on baseline 
performance is known to decline in the course of visu-
ospatial task demands. Due to diminished alertness and 
neural fatigue, biases shift rightward naturally over time 
[57–59]. We examined the two hemispheres in the order 
left–right-left–right, i.e., in two turns. To prevent a time-
on-task effect, we took breaks after every examination 
of one hemisphere, and we periodically animated our 
subjects to maintain concentration for the time span in 
between. An increasing rightward shift over time should 
have resulted in a higher total number of rightward 

deviations for the right hemisphere compared to the left 
hemisphere. Fortunately, we could not find any pattern 
of time-effects. The number of rightward deviations was 
comparable for both hemispheres (see “Rightward devia-
tions” section).

To get a better measure of our findings, we performed 
a principal analysis of deviation numbers and sizes, as 
outlined in 3.2. Leftward deviations were recorded sig-
nificantly more often and were significantly smaller in 
magnitude than rightward deviations. The higher fre-
quency may be based on pre-existent pseudoneglect 
and might solely reflect right hemisphere activity during 
visuospatial task demands, especially as the score values 
tended to be small. On the other hand, an already left-
ward baseline score limited the attainable magnitude of 
negative deviation scores per se. In contrast, rightward 
deviations were found to be strikingly great in magnitude 
and significantly stronger than leftward deviations (Fig. 3; 
Tables 3, 4). Once more referring to the baseline perfor-
mance, we could categorize these rightward deviations 
as a reduction or cancellation of the natural leftward 
bias, i.e., of pseudoneglect. This pseudoneglect “ceiling 
effect” has been described before [14, 17]. Furthermore 
these rightward deviations parallel the classic symptom 
of left visual neglect. In clinical routine, visual neglect 
is described as being both the most common and most 
pronounced phenomenon after right hemispheric dam-
age [7, 8, 27, 60]. Accordingly, we found the right hemi-
sphere to be significantly more suggestible by rTMS than 
the left hemisphere (Figs.  3, 4). This is also in line with 
our initial assumption that rTMS of the right hemisphere 
ought to strikingly misbalance the base state of process-
ing in which the right hemisphere takes the dominant 
part. To summarize, we may reaffirm that rTMS affords 
a useful opportunity to map visuospatial attention func-
tion at the cortical level, most convincingly for the right 
hemisphere and—when examining healthy men with 
pseudoneglect—for attention processing to the right.

Cortical distributions with reference to the current 
literature
The unquestionably best-known form of visual neglect 
is the combination of right hemispheric parietal damage 
followed by contralesional left deficits. Notwithstanding, 
there are more and more reports of other lesion locations 
and clinical manifestations, up to reports on the concur-
rent occurrence of ipsi- and contralesional deficits [47, 
61–64]. As a side note, the greyscales study by Mattingley 
et  al. [27] also included two right-parietal patients with 
an extreme leftward bias and thus ipsilesional neglect. As 
introduced above, studies on pseudoneglect in healthy 
adults have additionally helped to explain processing 
mechanisms [14–18, 20, 22–25]. However, a comparative 
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discussion of results proves difficult because of the het-
erogeneity of approaches. Studies use different tasks to 
measure visuospatial deficits, focus on different loca-
tions, and interpret their results from different angles. 
One fact upon which they all agree, which has persisted 
over the course of decades, is that the right hemisphere 
at least plays a somewhat special role, whether domi-
nant or controlling [65, 66]. This idea also provides the 
basis for explaining the high prevalence of pseudoneglect 
in healthy adults [15, 16, 21–24, 51]. Regarding cortical 
distributions, there is the widely accepted idea of sub-
cortical fiber tracts connecting frontal areas with pari-
etal areas and the temporoparietal junction (TPJ) [2, 3, 
24, 54, 55, 65, 67]. Corbetta and Shulman assume two 
networks: a dorsal network including superior parietal 
and frontal areas represented on both hemispheres, and 
a ventral network including the TPJ and inferior frontal 
areas represented dominantly on the right hemisphere 
and supervising the dorsal network [3]. To class our find-
ings with these models, we have to differentiate between 
the left and the right hemisphere. Within the left hemi-
sphere occasional spots of frontal, parietal, and lateral 
occipital areas presented with strong deviation effects 
(Fig. 4a, c), though we cannot distribute them distinctly 
to the stated networks and must suggest forming care-
ful conclusions from these findings. Yet, rTMS-lesion-
ing of the right hemisphere detected cortical spots that 
accorded well with the introduced models. Interestingly, 

Table 4  Deviation scores per  cortical spot for  the  right 
hemisphere

Cortical spot “Leftward” deviation scores “Rightward” deviation 
scores

Number 
of subjects

Mean 
of these 
subjects’ 
scores

Number 
of subjects

Mean 
of these 
subjects’ 
scores

1 4 − 0.21 6 0.56

2 6 − 0.29 4 0.63

3 7 − 0.22 3 0.73

4 7 − 0.24 3 0.96

5 7 − 0.18 3 0.93

6 7 − 0.17 3 0.62

7 7 − 0.24 3 0.33

8 5 − 0.40 5 0.32

9 7 − 0.26 3 1.15

10 6 − 0.28 4 0.72

11 6 − 0.38 4 0.73

12 7 − 0.27 3 0.44

13 7 − 0.34 3 1.15

14 7 − 0.26 3 0.95

15 6 − 0.23 4 0.48

16 7 − 0.33 3 0.52

17 6 − 0.34 4 0.43

18 5 − 0.40 5 0.73

19 6 − 0.23 4 0.58

20 4 − 0.30 6 0.44

21 4 − 0.23 6 0.44

22 5 − 0.26 5 0.80

23 4 − 0.18 5 0.72

24 6 − 0.21 4 0.68

25 3 − 0.19 6 0.57

26 5 − 0.22 5 0.58

27 5 − 0.25 5 0.65

28 5 − 0.21 5 0.46

29 5 − 0.27 5 0.61

30 4 − 0.23 6 0.80

31 5 − 0.23 5 0.65

32 4 − 0.28 6 0.49

33 4 − 0.26 6 0.63

34 6 − 0.20 4 1.04

35 4 − 0.35 6 0.41

36 5 − 0.20 5 0.73

37 7 − 0.24 3 0.90

38 7 − 0.18 3 0.77

39 4 − 0.21 6 0.43

40 6 − 0.23 4 0.53

41 4 − 0.36 6 0.59

42 5 − 0.21 5 0.38

43 6 − 0.15 4 1.04

44 6 − 0.24 4 0.79

Results for stimulation of the right hemisphere. Number of subjects with 
negative deviation scores (“leftward”) and mean of their scores. Number of 
subjects with positive deviation scores (“rightward”) and mean of their scores. 
Outline per cortical spot 1–52 plus mean, standard deviation (SD), minimum 
(MIN), and maximum (MAX)

Table 4  (continued)

Cortical spot “Leftward” deviation scores “Rightward” deviation 
scores

Number 
of subjects

Mean 
of these 
subjects’ 
scores

Number 
of subjects

Mean 
of these 
subjects’ 
scores

45 7 − 0.33 3 0.58

46 6 − 0.19 4 0.87

47 7 − 0.26 3 1.26

48 5 − 0.38 5 0.65

49 7 − 0.22 3 0.56

50 7 − 0.26 3 0.91

51 7 − 0.27 3 0.59

52 4 − 0.16 6 0.41

Mean 6 − 0.25 4 0.67

SD 1 − 0.06 1 0.22

MIN 3 − 0.15 3 0.32

MAX 7 − 0.40 6 1.26
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we found leftward deviations (corresponding to ipsile-
sional neglect) to mainly be distributed to posterior 
parietal and superior frontal areas, according to the pro-
posed dorsal network (Fig. 4b; Table 4). The observation 
of leftward instead of rightward deviations does not go 
in line with the basic responsibilities Corbetta and Shul-
mann intended for their networks [3]. However, suppos-
ing equal neuronal structures and thus rTMS-effects for 
dorsal or ventral brain regions, we should contemplate 
subtler task allocations within the dorsal network. There 
are several publications on the occurrence of ipsilesional 
neglect after right-hemispheric damage [62, 63, 68, 69]. 
Chokron et al. [70] even reported right visual neglect in 
patients with left hemianopia plus neglect. Especially the 
role of frontal and subcortical areas is discussed, albeit, so 
far, there is no generally accepted explanation that could 
be integrated into the model of Corbetta and Shulmann 
[61, 64]. On the contrary, rightward deviations (corr. to 
contralesional neglect) could be triggered best at inferior 
frontal spots and at a pool of spots within the area of the 
TPJ (Fig. 4d; Table 4). In turn, these observations comply 
with both localization and function of a ventral network.

Fig. 3  Inter-hemispheric comparison of deviations. Deviation sizes in 
comparison. Plotted are mean deviation scores per cortical spot (no. 
1–52), as always, for the left hemisphere (y-coordinate; Table 3) and 
the right hemisphere (x-coordinate; Table 4). Leftward deviations in 
blue, rightward deviations in red

Fig. 4  Cortical distribution of deviations. Cortical distributions within the left hemisphere (a, c) and the right hemisphere (b, d). Presented are the 
mean deviation scores (Tables 3, 4). Leftward deviations in blue, rightward deviations in red
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At this point we also want to mention our group’s first 
work on neglect, which was a combination of rTMS and 
a classical landmark task [36]. We successfully showed 
the feasibility of mapping visuospatial attention, yet 
the landmark task solely provided information in the 
form of right-or-wrong answers, and the resulting error 
rates among our healthy volunteers tended to be rather 
small. The study presented here can be seen as a second 
approach to gather more and better comparable data 
using the greyscales task. As already outlined, the grey-
scales task takes into account any recorded answer and 
allows interpretations independently from any existent 
deficits. Since the two tasks use quite different ways of 
measuring visuospatial attention and respectively differ-
ent forms of analysis, and since both approaches con-
formed to pilot studies’ inclusive limitations, we decided 
not to compare single results. However, we may summa-
rize that the findings of both go well together, embed-
ded in the generally acknowledged model of visuospatial 
processing. Regarding the right hemisphere, we found 
consistent distributions in the area of the TPJ and for 
spots of the middle frontal gyrus. For clinical purposes 
the greyscales task design stands out by being quite eas-
ily applicable and bearable while achieving sensitive 
results. To reach similar sensitivity for the landmark task, 
we would have had to increase its difficulty, for example, 
by shortening the line differences between the left and 
right segments. Yet, all our healthy subjects reported the 
landmark task as being particularly demanding, which is 
why we seriously doubt its feasibility at a higher difficulty 
level, let alone in elderly patients.

Future prospects
Obviously, the acting and interacting of networks 
responsible for visuospatial attention has not yet been 
understood to the fullest extent. Research increasingly 
concentrates on the subcortical level [71–73]. However, 
several options are conceivable to integrate cortical map-
ping using rTMS. For example, a combination with fMRI 
enables the detection of unintended remote stimulation 
effects and potentially accountable white matter connec-
tions [74]. Furthermore, seminal approaches are made 
by diffusion tensor imaging fiber tracking. The combina-
tion of diffusion tensor imaging fiber tracking and rTMS 
language mapping recently obtained highly promising 
results for the imaging of subcortical language pathways 
and may be assessed similarly for the rTMS-mapped 
visuospatial attention function [75–78]. Basic research 
naturally aims to yield a clinical advantage. It could be 
shown that neurosurgeons profit by presurgical maps by 
preventing functional deficits while allowing maximal 
resection [9, 79]. In patients with certain tumor locations, 

we should consider adding maps of visuospatial atten-
tion function to the individual preoperative assessment. 
On the other hand, dealing with already existent deficits, 
neurologists currently develop new treatment regimes. In 
light of visual neglect being the result of damage accom-
panied by a misbalancing of large-scale brain networks, 
recovery correlates with rebalancing [1, 11, 80]. Once 
more, the presented combination of the greyscales task 
and rTMS may be advantageous in terms of generating 
individual and accurate cortical maps for therapeutic 
interventions.

Conclusion
Referring to our initial hypotheses, we can conclude that 
the greyscales task on tachistoscopic test conditions, in 
combination with rTMS, is appropriate, sensitive, and 
accurate in mapping visuospatial attention function on a 
cortical level.
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