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Mice lacking galectin‑3 (Lgals3) function 
have decreased home cage movement
Tammy R. Chaudoin and Stephen J. Bonasera*

Abstract 

Background:  Galectins are a large family of proteins evolved to recognize specific carbohydrate moieties. Given the 
importance of pattern recognition processes for multiple biological tasks, including CNS development and immune 
recognition, we examined the home cage behavioral phenotype of mice lacking galectin-3 (Lgals3) function. Using a 
sophisticated monitoring apparatus capable of examining feeding, drinking, and movement at millisecond temporal 
and 0.5 cm spatial resolutions, we observed daily behavioral patterns from 10 wildtype male C57BL/6J and 10 Lgals3 
constitutive knockout (Lgals3−/−; both cohorts aged 2–3 months) mice over 17 consecutive days. We performed a 
second behavioral assessment of this cohort at age 6–7 months.

Results:  At both ages, Lgals3−/− mice demonstrated less movement compared to wildtype controls. Both forward 
locomotion and movement-in-place behaviors were decreased in Lgals3−/− mice, due to decreased bout numbers, 
initiation rates, and durations. We additionally noted perturbation of behavioral circadian rhythms in Lgals3−/− mice, 
with mice at both ages demonstrating greater variability in day-to-day performance of feeding, drinking, and move-
ment (as assessed by Lomb-Scargle analysis) compared to wildtype.

Conclusion:  Carbohydrate recognition tasks performed by Lgals3 may be required for appropriate development of 
CNS structures involved in the generation and control of locomotor behavior.
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Background
Galectins are an evolutionarily ancient family of proteins 
sharing a high binding affinity for carbohydrates with 
β-galactoside linkages. In the extracellular space, galec-
tins interact (through a conserved carbohydrate recog-
nition domain, aka CRD) with glycosylated proteins to 
mediate both cell-to-cell interactions and cell-to-matrix 
adhesion. Galectins are thus pattern recognition mol-
ecules specialized to distinguish carbohydrate moieties.

Within the galectin family, galectin-3 (also known as 
Lgals3) has unique properties. Its preferred ligand is 
N-acetyllactosamine [1]. It is also the only galectin con-
taining a conserved N-domain as well as a single CRD 
domain. This N-domain allows Lgals3 not bound to a 
carbohydrate target to form multimeric complexes [2]. 

In this manner, low extracellular Lgals3 concentrations 
tend to inhibit extracellular interactions and adhesion [3], 
while high Lgals3 extracellular concentrations facilitate 
cellular adhesion [4, 5]. Lgals3 affinity for ECM substrates 
is also modulated by phosphorylation at its Ser6 residue 
[6].

Lgals3 is an NFκB target gene [7]; Lgals3 protein is 
widely distributed throughout most tissue sites (as dem-
onstrated by the TiGER Tissue specific gene expression 
and regulation database; [8]). Furthermore, within spe-
cific tissues, Lgals3 protein expression is widespread, 
with extracellular [9], membrane bound, cytoplasmic, 
and nuclear localizations (for review, see [10]).

Given these varied Lgals3 tissue and cellular distribu-
tions, it is not surprising to find that cellular functions 
attributed to Lgals3 are numerous and diverse: (1) con-
text-sensitive cell adhesion [11] or dehiscence [12], (2) 
receptor for advanced glycation (AGE) and advanced 
lipoxygenation (ALE) end products [13], (3) regulating 
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clathrin-independent endocytosis [14], (4) regulating 
intracellular signal transduction by spacing apart mem-
brane-bound signaling complexes [15], (5) modulating 
Wnt/β-catenin signaling [16], (6) influencing TTF-1 and 
STAT transcription factor activities [17, 18], (6) regulat-
ing mRNA maturation through their effects on spliceo-
some function [19], (7) repairing DNA damage [20], (8) 
inducing late G1 cell cycle arrest [21], (9) promoting 
cell proliferation [22], and (10) promoting cell survival 
through the anti-apoptotic effects of Bcl2 [23]. Lgals3 
also participates in immune function. It contributes to 
innate immunity through its abilities to opsonize cellu-
lar debris [24], facilitate generation of respiratory burst 
enzymes [25], function as a MerTK-specific eat-me signal 
[26], and act as a CNS alarmin [27]; moreover, it contrib-
utes to acquired immunity through its regulation of T cell 
activation [15].

Finally, there is an increasing recognition that proteins 
capable of molecular pattern recognition play significant 
roles in CNS synapse formation, pruning, and mainte-
nance [28]. Already, many different classes of pattern 
recognition molecules have been implicated in these pro-
cesses: major histocompatibility genes [29, 30], comple-
ment [31], paired immunoglobulin-like receptors [32], 
and toll-like receptors [33]. These pattern recognition 
receptors all have highly conserved glycosylation sites 
(MHC-I [34]; C3 [35]; PirB [36]; Tlr2 [37]), making them 
potential Lgals3 interaction partners. Lgals3-mediated 
recognition of specific N-acetyllactosamine sites may be 
required for CNS developmental events. For example, 
prior studies demonstrate that altered Lgals3 expression 
has a role in age-related synaptic changes accompanying 
functional loss [38].

Objectives
We thus assessed baseline behaviors in a mouse model 
to evaluate Lgals3 influence on important behaviors of 
clinical interest, including metabolism, feeding, drinking, 
movement, and circadian rhythm. We measured metabo-
lism using indirect calorimetry with correction for mouse 
adiposity. We used a sophisticated home cage monitor-
ing approach to assess mouse feeding, drinking, activ-
ity, and circadian rhythm in a noninvasive manner over 
more than 2  weeks of observation. Surprisingly, despite 
the large number of molecular interactions involving 
Lgals3, and well-documented Lgals3 CNS expression (in 
neurons, microglia, and astrocytes), we found only two 
significant behavioral deficits accompanying constitutive 
Lgals3 loss: decreased locomotor movement, and dimin-
ished fidelity of circadian feeding, drinking, and move-
ment patterns.

Methods
Ethical statement
All studies were performed in full concordance with both 
institutional and federal regulations regarding animal 
care and use; our research protocol was approved by the 
University of Nebraska Medical Center (UNMC) Institu-
tional Animal Care and Use Committee (IACUC).

Animal models and husbandry
We evaluated cohorts of C57BL/6J male mice (stock 
number 000664) and mice carrying a constitutive Lgals3 
mutation (Lgals3−/−; B6.Cg-Lgals3tm1Poi/J; stock num-
ber 006338), both obtained from Jackson Laboratories. 
Briefly, these mice were created through homologous 
recombination removing the native Lgals3 exons II, III, 
and IV and replacing them with a neomycin resistance 
cassette. Homozygous mutant offspring derived from 
this targeted lesion expressed only the 3.4  kb predicted 
EcoRI fragment, and did not have the 6.4  kb WT frag-
ment [39]. Mice obtained from Jackson have undergone 
7 backcrosses to C57BL/6J from the original chimeric 
mouse. Upon initial receipt at our vivarium, mice were 
housed in a microisolator system (Lab Products, Seaford 
DE) at a density of ≤ 5 mice per cage. No mice were used 
for breeding purposes. The facility maintained a 12:12 
circadian lighting schedule with lights on at 06:00 CST; 
vivarium temperatures ranged between 20 and 23  °C. 
All mice had ad  libitum access to food (Envigo Teklad 
#7012), water, and environmental enrichment (Crinkle 
Paper Pouches, WF Fisher). Animal health was checked 
on a daily basis by UNMC Comparative Medicine staff. 
Mice remained in the vivarium for 14 days prior to start 
of testing. While mice were housed in the vivarium, cage 
bedding, food, and water were changed every 14  days. 
Mice were returned to the vivarium and kept singly-
housed between the two longitudinal assessments. Fol-
lowing testing, mice were sacrificed by CO2 inhalation 
followed by cervical dislocation.

Body mass composition
We performed dual X-ray absorptiometry (DEXA) imag-
ing to measure mouse adiposity. We performed a longi-
tudinal assessment of 10 WT and 10 Lgals3−/− mice; we 
first tested mice at 2–3  months old, followed by repeat 
assessment at 6–7  months old. Investigators were not 
blinded to mouse genotype. Mice received DEXA imag-
ing in a random manner. DEXA testing occurred between 
10:00 and 16:00. Animals were lightly anesthetized with 
isoflurane at 1–3  vol%, and imaged with a Piximus I 
(Inside/Outside, Fitchburg WI). Before data acquisition, 
the system was calibrated by imaging a phantom with 
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defined radiological characteristics. We used vendor sup-
plied software (Piximus I, GE Lunar) to identify regions 
of interest (ROIs) encompassing the mouse chest/abdo-
men/pelvis for determination of bone mass density 
(BMD), bone mineral content (BMC), bone area (BArea), 
tissue area (TArea), ratio of soft tissue attenuation (RST), 
total tissue mass (TTM), and percent adiposity (% fat). 
Data was analyzed by repeated measures analysis of vari-
ance (ANOVA, implemented in MATLAB 2011b) with 
genotype and mouse age as primary factors, and a geno-
type × age interaction.

Indirect calorimetry to assess basal and activity‑associated 
metabolism
We performed a longitudinal assessment of 10 WT and 
10 Lgals3−/− mice; we first tested mice at 2–3 months old, 
followed by repeat assessment at 6–7 months old. Inves-
tigators were not blinded to mouse genotype. Mice were 
assigned to calorimetry enclosures in a random manner. 
Animals were fasted overnight, then placed into 8 her-
metically-sealed metabolic cages (Oxymax, Columbus 
Instruments). Mice were tested between 10:00 and 17:00; 
each measurement of gas tension required 2  min, so 
each animal had its metabolic parameters assessed every 
16  min during the testing period. We used vendor sup-
plied software (Oxymax for Windows 4.49) to determine 
maximum oxygen uptake ( V̇O2), global oxygen delivery 
(DO2), oxygen output (O2out), maximum CO2 produc-
tion, ( V̇CO2), global CO2 removal (DCO2), CO2 output 
(CO2out), and heat generated. Basal metabolic rates were 
determined by averaging measurements obtained dur-
ing the 3 epochs displaying the least activity (as meas-
ured by photobeam brackets spanning the length of the 
metabolic chamber); similarly, activity-associated meta-
bolic rates were determined by averaging measurements 
obtained during the 3 epochs displaying the most activ-
ity. Metabolic parameters were then adjusted for mouse 
adiposity and mouse lean body mass using ANCOVA [40, 
41]. Full description of our metabolic testing apparatus is 
provided in [42]. Mice were weighed using a Scout Pro 
SP401 (Ohaus, Parsippany NJ) before indirect calorim-
etry, home cage behavioral monitoring, and on a weekly 
basis between the two longitudinal assessments and fol-
lowing the last assessment.

Home cage behavioral monitoring
Details describing our home cage behavioral monitoring 
system have been previously published [43, 44]. Briefly, 
we measure mouse feeding, drinking, and movement at 
high temporal and spatial precision in a custom-designed 
home cage over extended periods of time. Feeding is 
quantified by the number of times a mouse breaks a pho-
tobeam while accessing a food hopper (ms resolution). 

Drinking is quantified by a capactive lickometer (ms res-
olution). Movement is quantified by solving exact equa-
tions of torque measured at three load cells and knowing 
mouse body weight (ms temporal, 0.5 cm spatial resolu-
tion). Data undergoes rigorous automated quality con-
trol, followed by behavioral classification and analysis 
[43]. We performed a longitudinal assessment of 10 WT 
and 10 Lgals3−/− mice; we first tested mice at 2–3 months 
old, followed by repeat assessment at 6–7  months old. 
Mice were randomly assigned to one of 64 home cage 
behavioral assessment arenas. Each arena contained a 
niche modeled to approximate dimensions of a mouse 
burrow to organize mouse resting location, and a nestlet 
(NES3600, Ancare) for nesting materials. Powdered chow 
and water were available to all mice ad libitum; behavio-
ral testing room lighting schedule was 12:12 with lights 
on at 0600  h CST. Room temperature ranged between 
20 and 23  °C; facility relative humidity ranged between 
35 and 51%. The arena floor was layered with absorbent 
bedding (200 ml Teklad Sani-chips (Envigo, Huntington 
UK), 300  ml ALPHA-Dri® + PLUS (Shepherd Specialty 
Papers, Watertown TN)). Mice were allowed to habitu-
ate to the home cage monitoring system for 5 days before 
start of data collection. Investigators were not blinded 
regarding mouse genotype. We then collected 17 consec-
utive days of data for each mouse (to ensure that we had 
at least 14 full days of data after quality control) at each 
longitudinal assessment time point.

Mouse behavioral data quality control, classification, 
and analysis
We employed automated data quality control checks to 
identify outliers and epochs where there may be ques-
tions regarding data integrity (in particular, blocked pho-
tobeams and sipper tube leaks). These epochs constituted 
less than 1% of total data collected, and were removed 
from the dataset. Following data quality control, individ-
ual mouse feeding, drinking, and movement events were 
classified to determine active and inactive state proper-
ties (in a manner similar to human actigraphy), and to fit 
these behaviors to a Gaussian mixture model that would 
allow us to compare bout structures across genotypes. 
Theory and implementation of these processes has been 
published in [42, 43 (both manuscript and data supple-
ment), 44].

Following data classification, we performed false-dis-
covery rate (FDR) analysis over 665 different outcomes 
that assessed differences in major behavioral catego-
ries including overall feeding/drinking/movement, time 
budget, active and inactive state structure, intake and 
movement bout structure, within-bout structure, and 
periodicity. These results are provided as Additional 
file 1: Table 1. For significant behaviors identified by this 
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analysis, we quantified genotypic differences in mouse 
behavior by one-way ANOVA with genotype as primary 
factor. In these analyses, multiple comparisons were 
addressed by Bonferroni correction.

Periodicity analysis
We examined circadian periodicities using Lomb-Scargle 
analysis, which detects multiple periodicities within a 
time series [45, 46]. A major advantage of this approach 
is that it remains robust in the setting of incompletely 
sampled data streams. Feeding, drinking, and movement 
data were binned into 6-min epochs, and significant peri-
odicities (up to 60 h duration) were calculated using an 
implementation described by [47] and coded in MAT-
LAB 2011b (MathWorks, Natick MA).

Results
FDR analysis suggests that Lgals3−/− mice demonstrate 
significant movement deficits
In 2–3  months old mice at α = 0.10, we identified 20 
behaviors that significantly differed between the WT 
and Lgals3−/− cohort, 16 of which related to movement 
(Additional file  1: Table  1, first tab, column 29). By χ2 
test, movement-related behaviors were overrepresented 
within this set (16 observed, 7 expected, p < 0.009 with 
critical p < 0.016). Similarly, in 6–7  months old mice at 
α = 0.05, we identified 82 behaviors that significantly dif-
fered between the WT and Lgals3−/− cohort, 62 of which 
were related to movement (Additional file  1: Table  1, 
second tab, column 29). By χ2 test, movement-related 
behaviors were again highly overrepresented within this 
set (62 observed, 29 expected, p < 1.0 × 10−6 with critical 
p < 0.016). These results suggest that Lgals3−/− mice have 
a deficit in motor function that progresses with age.

Movement deficits in Lgals3−/− mice
As is evident in Fig.  1a, both 2–3  months old and 
6–7 months old Lgals3−/− mice demonstrate significantly 
less total movement compared to WT mice. This pheno-
type is particularly prominent during the circadian dark 
cycle, when mice are most active. In an effort to deter-
mine the underlying cause of this decreased movement, 
we subdivide movement into locomotion (consisting of 
movements performed at high gait speeds with small 
turning angles) and movement-in-place (consisting of 
movements performed at low gait speeds with large 
turning angles). For 2–3  months old mice, we note no 
significant genotypic differences in any locomotor bout 
properties (Fig. 1b, top left). However, for 2–3 months old 
mice we note significant genotypic differences in move-
ment-in-place bout properties of total movement, bout 
rate, active state bout rate, bout number, and bout dura-
tion (Fig. 1b, top right, also see Table 1). In 2–3 months 

old Lgals3−/− mice, movement-in-place bouts were also 
statistically more likely to be the first behavior performed 
within new dark cycle active states (WT probability 
0.09 ± 0.01; Lgals3−/− probability 0.13 ± 0.01, p < 0.007 
with critical p < 0.0125).

The above movement phenotype was more prominent 
in 6–7 months old mice. We noted genotypic differences 
in locomotor bout total distance, overall bout rate, active 
state bout rate, bout number, and bout duration (Fig. 1b 
bottom left, also Table 2). These differences led to a sta-
tistically significant decrease in the percent time devoted 
to locomotion within a 24 h time budget (3.8 ± 1.0% WT, 
2.5 ± 0.4% Lgals3−/−, p < 0.002 with critical p < 0.01). 
Older Lgals3−/− mice demonstrated changes in move-
ment-in-place bouts similar to those observed in younger 
mice, with genotypic differences in bout total distance, 
bout rate, bout active state rate, bout number, and per-
bout duration (Fig. 1b bottom right, also Table 2). Finally, 
we again noticed that movement-in-place bouts were 
statistically overrepresented as the first behavior per-
formed within newly started dark cycle active states (WT 
probability 0.11 ± 0.01; Lgals3−/− probability 0.18 ± 0.01, 
p < 0.004 with critical p < 0.0125).

Lgals3−/− mice have greater day‑to‑day heterogeneity 
in circadian rhythms for movement, food, and water intake
In both 2–3 months and 6–7 months old mouse cohorts, 
we note significant decreases in normalized power of 
the 24-h spectral components for feeding, drinking, and 
movement behaviors in Lgals3−/− mice (Fig.  2). These 
decreases suggest an increase in the variability of feed-
ing, drinking, and movement over 6  min time windows 
extending through the duration of our 16 day long obser-
vation. We did not appreciate any significant advance or 
retreat of the daily activity onset and offset times, nor did 
we find any statistically significant difference in overall 
active phase duration.

6–7 months old Lgals3−/− mice have greater body weights 
than WT cohorts
We found no genotypic differences in neither body weight 
nor body mass composition between 2 and 3 months old 
WT and Lgals3−/− mice. Similarly, we found no geno-
typic differences in basal metabolic or activity-associated 
metabolic rates between 2 and 3  months old WT and 
Lgals3−/− mice. However, 6–7 months old Lgals3−/− mice 
were heavier than their WT counterparts (27.0 ± 1.2  g 
WT, 28.4 ± 1.3  g Lgals3−/−, p < 0.02). Body mass over 
the study time period is shown in Fig.  3, and suggests 
that the two cohorts diverge around 6–7 months of age. 
Body mass composition parameters noted with this 
weight change included greater adiposity (14.1 ± 2.1% 
WT, 16.1 ± 2.0% Lgals3−/−, p < 0.03), greater total tissue 
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mass (23.8 ± 1.0  g WT, 25.3 ± 1.3  g Lgals3−/−, p < 0.01), 
and greater bone mineral density (0.051 ± 0.003  OD/
cm2 WT, 0.0054 ± 0.002 OD/cm2 Lgals3−/−, p < 0.008) in 
6–7 months old Lgals3−/− compared to WT mice. No dif-
ferences in either basal or activity-associated metabolic 

rates were appreciated between 6 and 7 months old WT 
and Lgals3−/− mice.

Fig. 1  Decreased movement in Lgals3−/− mice. a Overall movement (both locomotion and movement-in-place) averaged by day and by circadian 
dark/light cycle for 2–3 months (darker traces) and 6–7 months (lighter traces) mouse cohorts. WT mice in green, Lgals3−/− mice in blue. Bars 
are ± one standard error of the mean. Grey background depicts dark cycle. b Movement properties. For each polygon graph, all eight axes depict 
a specific movement property. From the far-right axis moving counterclockwise, values depicted are for total bout duration, total bout distance, 
bout rate, active state bout rate, bout number, single bout duration, single bout distance, and bout speed. Values for WT mice depicted in green 
lines with surrounding 95% confidence intervals in light green; individual values for each mouse provided as green circles displaced from the axis. 
Values for Lgals3−/− mice depicted in blue lines with surrounding 95% confidence intervals in light blue; individual values for each mouse provided 
as blue circles displaced from the axis. Top left: polygon plot for 2–3 months old locomotor bout properties. Top right: polygon plot for 2–3 months 
old movement-in-place bout properties. Bottom left: polygon plot for 6–7 months old locomotor bout properties. Bottom right: polygon plot for 
6–7 months old movement-in-place bout properties

Table 1  Movement bout properties, 2–3 months old cohort

Behavior WT (mean ± SD) Lgals3−/− (mean ± SD) p

Movement in place total distance (m) 43.8 ± 7.6 26.9 ± 3.7 < 0.02

Movement in place bout rate (onsets/h) 45.0 ± 9.1 24.7 ± 3.8 < 0.02

Movement in place bout active rate 106.0 ± 20.2 68.6 ± 11.0 < 0.01

Movement in place total number bouts 3736 ± 758 2031 ± 308 < 0.02

Movement in place mean bout duration (s) 6.5 ± 1.7 10.1 ± 1.4 < 0.01
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Phenotypes with no difference between WT and Lgals3−/− 
cohorts in both 2–3 and 6–7 months old mice
Regarding home cage phenotypes, we noted no sig-
nificant differences in overall food or water ingestion 
between WT and Lgals3−/− mice. Except for the pre-
viously-noted difference in time allocated to locomo-
tion seen across the 6–7 month old cohorts, there were 
no significant differences in the 24  h time budgets for 

feeding, drinking, locomotion, movement-in-place, and 
resting. There were also no differences in the percentage 
of time within an active state devoted to feeding, drink-
ing, locomotion, and movement-in-place. We noted 
no significant differences (overall, or in either circadian 
dark or light cycles) in active or inactive state properties, 
including state onset rates, state durations, state transi-
tion probabilities, and total numbers of states. Finally, we 

Table 2  Movement bout properties, 6–7 months old cohort

Behavior WT (mean ± SD) Lgals3−/− (mean ± SD) p

Locomotor total distance (m) 422.9 ± 135.5 261.5 ± 29.3 < 0.003

Locomotor bout rate (onsets/h) 33.2 ± 8.6 22.2 ± 3.5 < 0.002

Locomotor bout active state rate 90.5 ± 23.9 61.5 ± 11.0 < 0.004

Locomotor total number bouts 2726 ± 704 1821 ± 289.6 < 0.002

Locomotor total bout duration (s) 3123.5 ± 833.3 2123.4 ± 306.1 < 0.004

Movement in place total distance (m) 37.3 ± 8.5 26.9 ± 4.5 < 0.004

Movement in place bout rate (onsets/h) 37.0 ± 9.2 24.7 ± 3.6 < 0.002

Movement in place bout active rate 100.5 ± 24.9 68.6 ± 11.8 < 0.003

Movement in place total number bouts 3032 ± 759 2031 ± 298 < 0.002

Movement in place mean bout duration (s) 6.4 ± 1.8 10.1 ± 2.0 < 0.0006

Fig. 2  Altered circadian rhythms for feeding, drinking, and movement in Lgals3−/− mice. Lomb-Scargle periodicity plots depicting significant 
periodicities (in hours) on x axis, normalized power of specific behavior on y axis. Green shaded lines depict WT responses, blue shaded lines 
depict Lgals3−/− responses. Error bars depict ± one standard deviation of the mean. The dashed line parallel to the x axis depicts the threshold for 
significant periodicities at α = 0.01. a Feeding, 2–3 months cohort. b Drinking, 2–3 months cohort. c Movement, 2–3 months cohort. d Feeding, 
6–7 months cohort. e Drinking, 6–7 months cohort. f Movement, 6–7 months cohort
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noted no differences in bout properties of feeding and 
drinking, including the circadian patterns of total bout 
intake, bout onset, bout probability, bout duration, bout 
intensity, and per-bout intake.

Discussion
There are currently few published studies examining the 
behavioral consequences of Lgals3 loss. The Consortium 
for Functional Glycomics (CFG) spearheaded an impres-
sive effort to obtain baseline behavioral profiles for a wide 
variety of genes involved in carbohydrate biology, includ-
ing Lgals3. Their results suggested that Lgals3−/− mice 
had diminished freezing in a contextual fear assay, and 
were more aggressive both in response to an approaching 
object and in a paired social encounter [48, 49]. Lgals3 
has also been implicated in regulation of energy balance 
status and development of obesity [50]. Loss of Lgals3 
function was associated with accelerated development of 
obesity, increased adiposity, insulin resistance, metabolic 
syndrome, and type II diabetes in mice receiving a high 
fat diet ([51, 52]; however, data from [53, 54] suggest low 
Lgals3 expression as potentially protective against type 
II DM). Lgals3 also has been shown to regulate adipose 
tissue development and function [55–57], and may be 
an important molecule mediating how diet influences 
hepatic steatosis [58, 59]. Finally, impaired cognition in 
older adults has been associated with specific Lgals3 pol-
ymorphisms (rs4644, rs4652, and rs1009977; [60]).

Comparing the above studies to our work, we first 
note that the CFG investigators observed no genotypic 

differences in body weight, dark and light cycle metabolic 
rates, and locomotion. Similarly, we did not find any gen-
otypic differences in food consumption or basal/activity-
associated metabolic rates in either 2–3  months old or 
6–7 months old mouse cohorts. Values for V̇O2 reported 
by CFG for both light and dark cycle epochs were con-
sistent with our measured basal and activity-associated 
V̇O2. We also noted no genotypic differences in body 
weight between 2 and 3 months WT and Lgals3−/− mice. 
However, 6–7  months old mice (slightly older than the 
oldest reported in [48]) had increased body weight and 
greater adiposity in Lgals3−/− compared to WT cohorts. 
Since the Teklad 7012 diet is 17% fat, and mouse dietary 
requirements are estimated at 5% fat [61], it is reasonable 
to suggest that the increase in Lgals3−/− body weight/
adiposity we observe in part replicates prior findings of 
high-fat-diet-induced obesity.

We provide the first data suggesting Lgals3 involvement 
in motor system development and/or performance. Spe-
cifically, we noted an overall ~ 30% decrease in Lgals3−/− 
movement (both locomotion and movement in place) 
compared to WT mice. This decrease was observed in 
an acclimated home cage over 16 days, and thus does not 
assess the same construct reported by the CFG investiga-
tors, who found no change in open field locomotion over 
30 min. Lgals3−/− mice therefore display decreased home 
cage locomotion with no change in novelty-evoked loco-
motion. The moderate increase in Lgals3−/− body weight 
may slightly increase the behavioral cost of movement, 
and thus decrease total movement. However, the promi-
nent differences in movement-in-place bout rate, active 
state bout rate, bout duration, and bout number observed 
in 2–3 months old mice, as well as the large differences 
in both locomotion and movement-in-place bout rate, 
active state bout rate, bout duration, and bout number 
observed in 6–7  months old mice, suggest that Lgals3 
constitutive loss evokes functional deficits in underly-
ing motor substrates. Both gene (ebi.ac.uk/gxa, infor-
matics.jax.org/expression.shtml) and protein expression 
(emouseatlas.org, proteinatlas.org) atlases suggest that 
Lgals3 expression (at low-to-moderate levels) occurs in 
both pre-and post-natal brain, and has been localized to 
regions involved in motor behavior generation, includ-
ing the cortex, striatum, cerebellum, and spinal cord. 
We thus argue that Lgals3 loss alters mouse motor func-
tion, either through its impact on motor development 
or through altered neuronal signaling in CNS regions 
that regulate or produce motor behavior. Further studies 
examining the consequences of Lgals3 loss at synaptic, 
neuronal, ensemble, and tissue levels of organization will 
be required to determine the precise mechanisms under-
lying this functional loss.

Fig. 3  Mouse body mass versus time. Lines depict mean body 
weights for WT (blue) and Lgals3−/− (green) mice; error bars are ± one 
standard error of the mean. Scattergrams for individual mice are 
depicted by small filled circles. Circles in shades of blue correspond 
to WT mice; circles in shades of green correspond to Lgals3−/− mice. 
Grey bands depict periods where mouse cohorts were tested in 
the home cage monitoring system. Note that neither axis begins 
at 0. Sampling interval for x-axis is 7 days except where noted by 
breakpoints
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As mentioned earlier, Lgals3 has been implicated in a 
large number of physiological tasks at both a cellular and 
organwide level of organization. It is thus notable that 
mice with complete loss of Lgals3 function demonstrate 
relatively few behavioral differences when compared to 
wildtype C57BL/6J mice. This finding suggests that, at 
least in the mouse, there is some genetic redundancy 
regarding Lgals3 function. Studies of galectin evolution 
focusing on intron/exon organization as well as sequence 
identity suggest that duplication of ancestral galectin 
genes in animal lineages preceding the first teleost fish 
[62] provided the precursors for what has become a large 
vertebrate protein family [63]. There is also data sug-
gesting that galectins may be able to substitute for one 
another in specific circumstances. For example, Lgals1 
may compensate for Lgals3 loss at the spliceosome [64]. 
Extracellular Lgals1 also regulates T cell apoptosis in a 
manner similar to that of extracellular Lgals3 [65]. The 
behavioral phenotype arising from Lgals3 functional loss 
thus identifies neuronal loci and processes where there is 
no compensation for gene loss.

Finally, these findings support the hypothesis that loss 
of molecules with specific pattern recognition properties 
(in this case, for β-galactosidase linkages) evokes behav-
ioral phenotypes potentially arising from inappropriate 
neuronal synaptogenesis, pruning, and/or maintenance. 
There is already clear evidence that molecules able to 
recognize specific protein regions play crucial roles dur-
ing CNS development [66, 67]. This study further implies 
that molecules able to recognize specific carbohydrate 
regions may have parallel roles during CNS development. 
Further efforts to understand carbohydrate recognition 
in the developing brain are thus clearly justified, and may 
provide important and clinically relevant insights into 
significant psychiatric conditions, including autism spec-
trum disorders [68] and schizophrenia [69].

Conclusions
This study provides the first data describing home cage 
feeding, drinking, movement, and circadian rhythm in 
mice cohorts constitutively lacking Lgals3 function. We 
performed a longitudinal assay of these behaviors at 2–3 
and 6–7  months of age. At both ages, Lgals3−/− mice 
showed less home cage movement compared to WT. This 
decrease was due to decreases in both forward locomo-
tion and movement-in-place. These differences grew 
more pronounced with age. In older mice, we could fur-
ther determine that decreased movement was a result 
of lower bout initiation rates (for both locomotor and 

movement-in-place bouts), with similar distances tra-
versed per bout. Lower bout initiation rates also led to 
lower total numbers of locomotion and movement-in 
place bouts. Lgals3−/− mice at both ages also had more 
heterogeneous circadian patterns of feeding, drinking, 
and movement compared to WT mice.
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