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Perception seems so simple. I look out of the window to see houses, 
trees, people walking past, the sky above, the grass below. I hear birds 
in the trees, cars going past, the distant sound of an alarm. The world 
is full of objects that make their presence known to me through my 
senses – what could be more simple? Yet the efficacy of perceptual 
experience hides a host of questions for which we do not yet have 
the answers. Information reaching our senses is generally incom-
plete, ambiguous, distributed in space and time and not neatly sorted 
according to its source, so a key function of our perceptual systems 
is to discover the likely causes of our sensations. Perception as infer-
ence or hypothesis testing, formalised in the predictive coding theory, 
offers an attractive framework for exploring these issues. From this 
perspective, regularities or patterns provide perceptual systems with 
some traction, allowing the formation of expectations and a basis 
for decomposing the world into discrete objects. But in the dynamic 
world which we inhabit, object representations must be similarly 
dynamic, and need to form and dissolve, dominate and yield, in a 
way that facilitates veridical perception. In this talk I will discuss audi-
tory scene analysis in the context of predictive coding using experi-
mental data, exemplar models, and the phenomenon of perceptual 
multistability.
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The goal of this presentation is to provide a set of predictions gener-
ated by biophysical and/or abstract mathematical models regarding 
the role of dendrites in information processing, learning and memory 
across different brain regions. Towards this goal, I will present mod-
elling studies from our lab –along with supporting experimental 
evidence- that investigate how dendrites may be used to facilitate 
the learning and coding of both spatial and temporal information at 
the single cell, the microcircuit and the neuronal network level. I will 
briefly present early work on how the dendrites of individual CA1 
pyramidal neurons may allow a single cell to act as a 2-stage neural 
network classifier [1], thus massively increasing the storage capacity 
of the neural tissue [2]. I will then discuss how such dendritic nonlin-
earities may enable stimulus specificity in individual PFC pyramidal 

neurons during working memory [3] and underlie the emergence of 
sustained activity at the single cell and the microcircuit level [3, 4]. The 
role of dendrites in memory phenomena will be assessed using circuit 
models of the Dentate Gyrus implementing pattern separation [5, 6] as 
well as hippocampal models capable of learning associative memories 
and linking them across time [7]. This presentation aims to highlight 
how dendrites are likely to serve as key players in different memory 
functions.
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Synaptic plasticity at the parallel fiber to Purkinje cell synapse has 
been studied extensively, both experimentally and computationally. 
The initial focus was on long-term depression (LTD) evoked by con-
current parallel fiber and climbing fiber activation, but more recently 
experimental studies have emphasized the behavioral importance of 
long-term potentiation (LTP) triggered by exclusive parallel fiber acti-
vation. Expression of these forms of plasticity is based on changes in 
the number of AMPA receptors in the postsynaptic density (PSD), LTD 
leading to a decrease and LTP to an increase. As such, this plasticity is 
bidirectional and can be described as the outcome of a competition 
by opposing processes. Through studies of hippocampal plasticity, we 
have come to understand the importance of all aspects of the AMPA 
receptor cycle in bidirectional synaptic plasticity, with LTD increasing 
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both diffusion out of the PSD and endocytosis of receptors and LTP 
favoring insertion of receptors that diffuse to the PSD. Moreover, the 
endosomal cycle is quite important because most endocytosed AMPA 
receptors are rapidly recycled to the postsynaptic membrane.
Calcium influx is always the first step in synaptic plasticity, but this 
influx is brief compared to the tens of minutes required to reach the 
maximum change in synaptic strength. For cerebellar LTD it is well 
established that the calcium signal activates a MAP-kinase based 
positive feedback loop that is essential for the early phase of LTD. We 
have built a completely new molecular model of bidirectional cerebel-
lar plasticity that replicates experimental findings, including the dual 
role of nitric oxide in LTP and LTD. LTD requires activation of the MAP-
kinase based positive feedback loop and this activation is controlled 
by CaM kinase. An emergent property of the model is an automatic 
shutdown of the positive feedback loop, corresponding to the end of 
the early phase.
In a second, simpler model, we have explored how the early phase 
can transition into a stable late phase by simple manipulations of the 
endosomal cycle. Unfortunately, experimental data on these processes 
is less complete, particularly about possible spatial restriction to single 
spines.
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This overview of the free energy principle offers an account of embod-
ied exchange with the world that associates neuronal operations with 
actively inferring the causes of our sensations. Its agenda is to link 
formal (mathematical) descriptions of dynamical systems to a descrip-
tion of perception in terms of beliefs and goals. The argument has 
two parts: the first calls on the lawful dynamics of any (weakly mixing) 
ergodic system – from a single cell organism to a human brain. These 
lawful dynamics suggest that (internal) states can be interpreted as 
modelling or predicting the (external) causes of sensory fluctuations. 
In other words, if a system exists, its internal states must encode prob-
abilistic beliefs about external states. Heuristically, this means that if I 
exist (am) then I must have beliefs (think). The second part of the argu-
ment is that the only tenable beliefs I can entertain about myself are 
that I exist. This may seem rather obvious; however, it transpires that 
this is equivalent to believing that the world – and the way it is sam-
pled – will resolve uncertainty about the causes of sensations. We will 
consider the implications for functional anatomy, in terms of predic-
tive coding and hierarchical architectures, and conclude by looking 
at the epistemic behaviour that emerges – using simulations of active 
inference.
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In their natural environment, Insects often encounter complex mix-
tures of odors in their natural environment. It is an important open 
question whether and how the processing of complex mixtures of 
multi-component odors differs from that of simpler mixtures or sin-
gle components. To approach this question, we built a full-size model 
of the early olfactory system of honeybees, which predicts responses 
to both single odorants and mixtures. The model is designed so that 
olfactory response patterns conform to the statistics derived from 
experimental data [1] for a variety of its properties. It also takes into 
account several biophysical processes at a minimal level, including 

processes of chemical binding and activation in receptors, and spike 
generation and transmission in the antennal lobe network. We verify 
that key findings from other experimental data not used in building 
the model [2–4] are reproduced in it. In particular, we replicate the 
strong correlation among receptor neurons and the weaker correla-
tion among projection neurons observed in experimental data [1, 
2] and show that this decorrelation is predominantly due to inhibi-
tion by interneurons. By simulation and mathematical analysis of our 
model, we demonstrate that the chemical processes of receptor bind-
ing and activation already lead to significant differences between the 
responses to mixtures and those to single component stimuli. On 
average, the response latency of olfactory receptor neurons at low 
stimulus concentrations is reduced (see Fig. 1a) and the response pat-
terns become less variable across concentrations (see Fig.  1b) as the 
number of odor components in the stimulus increases. These effects 
are preserved in the projection neurons. Our results provide hints that 
the early olfactory system in insects may be particularly efficient in 
processing mixtures, which corresponds well to the observation that 
chemical signaling in nature predominantly utilizes mixtures.

Fig. 1 a The average response latency decreases with the number 
of components in the odor stimulus. The effect is most significant 
when the stimulus concentration is low. b The pairwise correlation, 
averaged over all ORNs, between the response patterns at low and 
high concentration increases with the number of components in 
the odor stimulus
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Feedforward networks are ubiquitous structures in neural systems 
and have been studied in many contexts such as models for signal 
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transmission [1, 2], architectures for rich information processing [3], 
etc. However, most studies have ignored an important property 
commonly observed in real feedforward networks: neurons in one 
layer have contrasting characteristics from those in other layers. For 
example, the cerebellar granule cells are tiny and relatively simplistic 
neurons while their postsynaptic targets, the Purkinje cells, are much 
bigger, complex, and therefore have very different intrinsic proper-
ties. What would be the role of such layer-to-layer differences in neural 
circuits?
Here we address this question by simulation of a model feedforward net-
work, inspired by a recent experimental study on the Drosophila olfactory 
system [4]. In this model, all the adjacent layers have Morris-Lecar neu-
rons with different excitability types from each other and therefore differ-
ent computational functions. If one layer has cells with class I excitability, 
which behave like integrators of inputs, neurons in the adjacent layer are 
of class III, which act as coincidence detectors [5], and vice versa.
We found that spikes from one layer evoked a response in next layer 
neurons better when they had the same excitability type. However, in 
a deep feedforward network, this caused gradual accumulation of sig-
nal distortion, leading to the undesirable responses in deep layers that 
all the neurons either fired synchronously or became silent, as seen in 
classical studies (e.g., [1]). On the other hand, the network with hetero-
geneous layers demonstrated a novel signal transformation property 
as observed in [4] (Fig. 1a), and showed stable propagation of a signal 
into deep layers with a preserved temporal fidelity and spike count 
(Fig. 1b, c). We analyzed the result by using a phase space method in 
[1] and showed how mixing different coding schemes enables this fea-
ture (Fig.  1c). We conclude that heterogeneous layers in feedforward 
neural networks can be a mechanism for optimal information transfer.

Grid cells are neurons found in the rodent medial entorhinal cor-
tex. They take their name from their astonishing firing patterns: grid 
cells are active specifically in certain regions of physical space, called 
grid fields, that form a triangular grid tesselating the space explored 
by the animal. While experiments have been investigating the geo-
metrical properties of grid fields [1], computationalists have tried to 
explain them by neural network models. However, these models still 
fail to account for some of the experimental results, in particular how 
two distinct grid patterns are integrated when two compartments are 
merged into one (Wernle et al, in preparation).
We take a different approach: instead of modelling grid cells, we 
directly model single grid fields as point objects interacting with each 
other and with the environment’s borders (see Fig.  1a). This descrip-
tion is motivated by the way grid patterns are naturally considered as 
geometrical objects. We thus consider a system of interacting objects 
evolving as colloidal particles on a substrate [2]. First, we consider only 
grid fields from one grid cell, then we add coupling between several 
cells. We simulate the system with varying forms and intensity of the 
interactions. The simplicity of the model allows us to test many such 
possibilities and their outcome in several ‘experimental’ setups.
We show that under certain conditions the model does reproduce the 
behavior of experimental grid fields (see Fig.  1b). These conditions 
imply repulsion between fields, the involvement of a large number of 
fields, interaction between grid cells and with the walls. We are able to 
reproduce observed data from experiments in merged environments. 
We can also make predictions for setups not tested experimentally yet.
The question that then naturally arises is how to connect our descrip-
tion at the level of grid fields to models at the level of grid cells. We 
show how our grid-field model puts constraints on models of the 
underlying grid cells. Conversely, we discuss how existing grid-cell 
models can be described at the level of grid fields.
In conclusion, tackling the issue of grid patterns from a grid-field per-
spective provides new insights on their formation. Beyond grid cells, 
our work raises the question of the ultimate purpose of a model and 
the subtle interplay between description and explanation.

Fig.  1 a Firing rate of input (black, L1), integrator (red, L2), and 
coincidence detector (blue, L3) neurons. Note that a peak of L3 fir-
ing precedes that of L2, as observed in [4]. b Stable spike propaga-
tion in a network with many heterogeneous layers. c Layer-to-layer 
change in the SD of spike times (σ) and spike count (α) of b
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Fig. 1 General idea of grid field modeling. a Schematic representa-
tion of the model. A given grid field (red) feels the influence of other 
grid fields (blue) as well as the borders (grey) plus a viscosity force 
(green). b Example of a resulting pattern in a square box, converted 
into a firing rate map
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In most vertebrate neurons, action potentials are triggered at the distal 
end of the axon initial segment (AIS). They are then transmitted to the 
soma where they are regenerated and further propagated in the den-
dritic tree. The AIS position and length can be altered by changes in 
electrical activity, suggesting a strong link between AIS geometry and 
excitability. We studied theoretically the influence of AIS geometry on 
the somatic threshold for AP initiation. For this purpose, we solved the 
cable equation with appropriate boundary conditions in a cylindrical 
axon model. Our theoretical analysis shows that the somatic threshold 
depends logarithmically on the surfacic sodium conductance density 
and that increasing either the AIS length or the AIS start position low-
ers the threshold. We confirmed our prediction with numerical simu-
lations in a more detailed neuron model. Our analysis suggests that 
either a longer or a more distal AIS increases excitability, which supports 
a current hypothesis that the AIS is preferably isolated from the large 
capacitance of the soma. Secondly, we examined how the AIS geom-
etry influences the peak axonal current that is transmitted to the soma 
at spike initiation. Again, we used cable analysis to study this current in 
a two-cylinder model that represents the main geometrical features of a 
thick-tufted layer 5 pyramidal neurons. Our analysis shows that in order 
to obtain somatic spikes with a given speed, the AIS position should be 
proportional to the diameter of the apical dendrite raised to the -3/2. We 
confirmed this theoretical result with numerical simulations of a more 
detailed model. In addition, correlation analysis of layer 5 pyramidal 
neurons morphology confirms this theoretical prediction [1]. Our previ-
ous analyses suggest that the AIS geometry is finely tuned for successful 
spike transmission to the soma. More generally, neural systems tend to 
be efficient in their use of resources [2], which suggests that AIS geom-
etry might also be optimized for minimal energy consumption. As the 
energy consumption at subthreshold voltages is proportional to the 
number of channels, we asked whether there exists an AIS geometry that 
minimizes the total number of sodium channels. For this purpose, we 
used variational techniques to calculate the AIS geometry that minimizes 
total Na conductance, for a given spike threshold and axonal current.

Conclusion
Our theoretical analysis shows that AIS geometry has a strong impact 
on several aspects of excitability including energy consumption, 
which suggests that the AIS morphology is functionally tuned and 
possibly optimized.
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By controlling the state of neuronal populations, neuromodulators 
ultimately affect behaviour. A key neuromodulation mechanism is 
the alteration of neuronal excitability via the modulation of ion chan-
nel expression. This type of neuromodulation is normally studied via 
conductance-based models, but those models are computationally 

challenging for large-scale network simulations needed in population 
studies. Integrate-and-fire models provide a computationally advan-
tageous alternative, but such models are only partially successful in 
robustly capturing modulation between firing patterns.
In this work, we propose a modelling framework that extracts the quali-
tative properties of neuromodulation to produce neuromodulable and 
computationally efficient neuron models. Our framework is based on 
dynamic I-V curves, i.e. instantaneous I-V curves in a certain timescale [1]. 
These dynamic I-V curves make the connection between qualitative con-
ductance-based models and integrate-and-fire models: how a change 
in ion channel conductance can be related to a change of dynamic I-V 
curves and subsequently to a parameter change in the reduced inte-
grate-and-fire model. We focus on the modulation between tonic firing 
and bursting as an example. We argue that this modulation crucially 
relies on the co-regulation of two points of high sensitivity (i.e. excit-
ability) in two distinct timescales. The points of high sensitivity are local 
extrema in the I-V curves and correspond to an exact balance of positive 
and negative feedback. Those signatures have a direct correlate in the 
fast-slow phase portraits: a hysteretic V-nullcline in the presence of one 
(fast) balance, and a mirrored hysteresis in the presence of both a fast and 
a slow balance [2]. The classical quadratic integrate-and-fire model cap-
tures the fast balance, but does not account for the slow one.
The simple idea underlying the proposed multi-quadratic integrate-
and-fire model (MQIF) is to allow for several distinct balance points 
in an integrate-and-fire model. An integrate-and-fire model with two 
balance points is shown to robustly capture the neuromodulation 
between spiking and bursting, opening novel computational avenues 
for large-scale simulation of neuromodulated populations. The robust-
ness and modulation properties of this integrate-and-fire model are 
in sharp contrast to those of existing (generalised) integrate-and-fire 
models, which lack the slow excitability.
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Sholl analysis has been an important technique in dendritic anatomy 
for over sixty years [1]. In counting the number of dendritic branches 
at a given distance from the soma, the Sholl intersection profile is 
often taken as a crucial measure of dendritic complexity; it has been 
used in a broad range of applications, from estimating the expected 
number of possible synapses [2], to evaluating the changes in struc-
ture induced by pathologies [3].
We have shown that Sholl intersection profiles can be predicted by 
two more basic measures: the domain spanned by the dendritic arbor 
and the angular distribution of how far dendritic segments deviate 
from a direct path to the soma (Fig. 1c). The first measure is principally 
determined by axon location and hence microcircuit structure [4]; the 
second arises from optimal wiring [5]. These two measures allow Sholl 
analysis to be given a more functional interpretation across all of its 
applications.
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Characterizing the input-output transformations of single neurons is 
critical for understanding neural computation. Single-neuron mod-
els have been extensively studied, ranging from simple phenomeno-
logical models to complex multi-compartment neurons. However, 

linking mechanistic models of single-neurons to empirical observa-
tions of neural activity has been challenging. Statistical inference is 
only possible for a few neuron models (e.g. GLMs), and no generally 
applicable, effective statistical inference algorithms are available: As a 
consequence, comparisons between models and data are either quali-
tative or rely on manual parameter tweaking, parameter-fitting using 
heuristics or brute-force search [1]. Furthermore, parameter-fitting 
approaches typically return a single best-fitting estimate, but do not 
characterize the entire space of models that would be consistent with 
data (the ‘posterior distribution’).
We overcome this limitation by presenting a general method to infer 
the posterior distribution over model parameters given observed data 
on complex single-neuron models. Our approach can be applied in 
a `black box’ manner to a wide range of single-neuron models with-
out requiring model-specific modifications. In particular, it extends 
to models without explicit likelihoods (e.g. most single-neuron mod-
els). We achieve this goal by building on recent advances in likeli-
hood-free Bayesian inference [2]: the key idea is to simulate multiple 
data-sets from different parameters, and then to train a probabilistic 
neural network which approximates the mapping from data to poste-
rior distribution.
We illustrate this approach using single- and multi-compartment 
models of single neurons: On simulated data, estimated posterior dis-
tributions recover ground-truth parameters, and reveal the manifold 
of parameters for which the model exhibits the same behaviour. On 
in-vitro recordings of membrane voltages, we recover multivariate 
posteriors over biophysical parameters, and voltage traces accurately 
match empirical data. Our approach will enable neuroscientists to per-
form Bayesian inference on complex neuron models without having to 
design model-specific algorithms, closing the gap between biophysi-
cal and statistical approaches to single-neuron modelling.
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To generate appropriate behavior, the brain must predict the future 
state of the world from past sensory information. Taking the salaman-
der visual system as an example, at the minimum such predictions 
need to compensate for the 50–80  ms processing time of the retina 
[1] as well as the time for a motor response to be generated. Making 
these predictions requires leveraging the spatiotemporal structure of 
the natural world, a computation that is performed efficiently at the 
first stage of visual processing, in populations of retinal ganglion cells 
[2]. Neurons downstream of the retina infer predictions about object 
motion from the firing of their inputs, but to do so, downstream cells 
must learn to read out predictive information from the retinal activity.
More concretely, stimulus predictive information in a sensory popu-
lation is defined as the mutual information of particular patterns of 
spiking across retinal ganglion cells (RGCs) with the future stimulus 
[2]. We consider the output of a downstream model neuron that 
receives weighted inputs from several RGCs. By constructing moving-
bar dynamics that contain both predictable and stochastic motion, 
we can visualize the predictive information in readout spiking as the 

Fig.  1 The dendrite spanning field predicts the Sholl intersection 
profile of a Purkinje cell. a Rat Purkinkje cell [6] and schematic of 
Sholl analysis: the number of times the dendrite intersects with 
a gold arc gives the value of the Sholl intersection profile at that 
radius. b The spanning field of the above cell. c Root angle distri-
butions and (inset) joint angular and Euclidean connection prob-
abilities for the Purkinje cell (top) and artificial dendrites with 
different balances ß between wiring and delay costs (bottom). d 
Sholl intersection profiles for rat Purkinje cell (left) and mouse den-
tate gyrus granule cell [7] (right): observed (gold), predicted by just 
the spanning field (red), and predicted by the spanning field and 
root angles (blue dashed)
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difference between the prior stimulus distribution (Fig. 1a, gray) and 
the spike-triggered stimulus distribution: the larger the difference, 
the more informative the spike. In this example, the readout neuron 
was informative of the future stimulus (Fig. 1a), but most other read-
outs were not (not shown). Even for an experimenter with a well-
controlled sensory input, finding this optimal readout in the space of 
all possible readouts is difficult. In more realistic circumstances, the 
organism must make predictions about the future state of complex 
natural stimuli from the retinal spiking activity alone (Fig. 1b).
Here we address whether biologically plausible learning rules can 
find readout weights that transform RGC input into predictive down-
stream output. Input activity from the RGCs was previously recorded 
in the salamander retina in response to a natural movie (Fig. 1b). We 
first show that internal predictive information, the information that 
the readout has about its own future input, is correlated with stimulus 
predictive information, so that becoming more predictive of its inputs 
drives the readout neuron to encode more information about the 
future stimulus. Starting from a set of random weights connecting the 
RGCs to the readout neuron, we allow the weights to evolve via spike 
timing-dependent plasticity. Across many groups of RGCs, we find 
that learned readouts convey 80% of the possible predictive informa-
tion for groups of four cells, but only 30% for groups of ten cells. This 
decrease reflects a compressibility limit of predictive information and 
suggests an optimal pooling size for cells downstream from retina.

closed-loop experiments, we explore selectively the space of pos-
sible perturbations around a given stimulus. We then show that the 
response of the retinal population to these small perturbations can 
be described by a local linear model. Using this model, we computed
the sensitivity of the neural response to arbitrary temporal perturba-
tions of the stimulus, and found a peak in the sensitivity as a function 
of the frequency of the perturbations. Based on a minimal theory of 
sensory processing, we argue that this peak is set to maximize infor-
mation transmission. Our approach is relevant to testing the efficient 
coding hypothesis locally in any context where no reliable encoding 
model is known.
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Large synapses, i.e. the neuromuscular junction (NMJ) or the calyx of 
Held, have been invaluable model synapses that have significantly 
advanced the field of synaptic transmission. No generative model 
approach can faithfully retrieve quantal parameters from synapses 
with a large number of release sites (N). Here we propose an expec-
tation maximization (EM) method that is based on particle smoothing 
(PS) to extract quantal parameters from large N synapses. In contrast 
to an existing EM-based approach [1], using Baum-Welch (BW) which 
scales with a complexity of N^4 and hence cannot retrace quantal 
parameters of synapses with hundreds of release sites, our method is 
independent of N and therefore suitable for large synapses. First, our 
model was validated on synthetic data. As shown in Fig. 1, all param-
eters θ  =  {N,p,q,σ,τ} were faithfully retrieved. Next, we applied the 
model to the Drosophila NMJ, which is predicted to harbor hundreds 
of release sites. The model predicted quantal parameters that are in 
line with parameters predicted by two empirical approaches (vari-
ance-mean analysis and cumulative amplitude analysis of postsynap-
tic currents). In contrast to these two techniques, which require data 
recorded under conditions of high release probability (p), our method 
is independent of p or stimulation protocol. Given the genetic tracta-
bility of this synapse, our theoretical approach is expected to help link-
ing quantal parameters to molecular function.

Fig.  1 a Spike-triggered average of future stimulus position and 
velocity for a particular readout of population spiking activity 
with high predictive information. b Raster plots for simultaneously 
recorded retinal ganglion cells (RGCs) in response to a naturalistic 
movie featuring swimming fish. These are used to drive learning 
simulations
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According to the theory of efficient coding, sensory systems are 
adapted to represent natural scenes with high fidelity and at minimal 
metabolic cost. Testing this hypothesis for sensory structures per-
forming non-linear computations on high dimensional stimuli is still 
an open challenge. Here we develop a method to characterize the 
sensitivity of the retinal network to perturbations of a stimulus. Using 

Fig. 1 a Postsynaptic currents at the Drosophila NMJ, 50 trains of 
30 presynaptic action potentials at 60  Hz compared with model 
generated data from the fitted parameters at each stimulation step 
s; number of release sites N =  710, release probability p =  0.44, 
quantal content q = 0.74 nA, background noise σ = 13.22 nA and 
refilling time constant τ = 59 ms. b Comparison of the mean and 
standard deviation
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Models such as sparse coding [1] have shown that natural scene statistics 
can be used to predict basis units with Gabor-like receptive fields close 
to those observed in V1 simple-cells. Since the inputs to these models 
are natural images captured using a single camera, their outputs are 
monocular. Recently, attempts have also been made to exploit statistics 
of stereo-images of natural scenes [2]. The resulting bases units show 
binocular, Gabor-like receptive fields with population statistics close to 
those observed in V1. Although these models are able to replicate certain 
aspects of V1 binocular populations, they are either supervised, or mimic 
the result of learning from natural datasets, but not the process.
We propose a novel method of deriving monocular and binocular units 
through unsupervised learning from natural stereoscopic datasets using 
spike-timing-dependent-plasticity (STDP). Using the Hunter-Hibbard 
dataset [2], we first employed ON/OFF-center difference-of-Gaussian 
convolutions to mimic LGN responses (Fig. 1a). The responses were thres-
holded and converted to spike-latencies using a monotonically decreas-
ing function. This ensured that the most activated units fired first, while 
the less active units fired late, or not at all. We then trained an STDP 
based neural network using 1 × 1 degree spatial pools from the afore-
mentioned LGN layer. The network was composed of integrate-and-fire 
neurons and incorporated a lateral inhibition scheme. Finally, we charac-
terized the receptive field in each eye by fitting Gabor functions.
Our results (Fig.  1b) showed that most units developed Gabor-like 
receptive fields similar to those observed in V1 simple cells, with a 
continuum of ocular dominance from pure monocularity to perfect 
binocularity. In line with single-unit recordings in primates, disparity 
selectivity was principally observed along the horizontal dimension, 
where it ranges between −0.5° and 0.5°. Neurons also showed selec-
tivity to vertical disparity, although it was less pronounced. When 
tested with phase-shifted sine gratings, the units also showed dispar-
ity-tuning curves similar to those observed in the cat visual system.
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The brain processes time-varying input, but is it not known if its 
dynamical state is optimal for this task. Indeed, recurrent and ran-
domly coupled networks of rate neurons display rich internal 
dynamics near the transition to chaos [1], which has been associ-
ated with optimal information processing capabilities [2, 3, 4]. In 
particular, the dynamics becomes arbitrarily slow at the onset of 
chaos similar to ‘critical slowing down’. The interplay between time-
dependent input signals, network dynamics, and the resulting 
consequences for information processing are, however, yet poorly 
understood.
We here present a completely solvable model that allows us to inves-
tigate the effect of time-varying input on the transition to chaos. 
We analytically obtain the phase diagram spanned by the coupling 
strength and the input amplitude: External drive shifts the transition 
to chaos to significantly larger coupling strengths than predicted by 
linear stability analysis. The intermediate regime is absent in time-
discrete networks [5] and only exists in their more realistic time-con-
tinuous counterparts. This novel dynamical regime combines locally 
expansive dynamics with asymptotic stability. We investigate sequen-
tial memory [5] and analytically show that memory capacity is optimal 
within the novel regime. Because it is unclear if cortex operates in such 
a computationally beneficial regime, we develop a finite-size mean-
field theory which relates the statistics of measured covariances to the 
statistics of connections, in particular the spectral radius of the con-
nectivity matrix. The theory shows that the large dispersion of spike 
count covariances across pairs of neurons, observed in massively par-
allel recordings, is an indicator that cortex indeed operates close to the 
breakdown of linear stability (see Fig. 1).

Fig. 1 a Schematic of the processing pipeline. b Five representative 
neurons (one per column) before and after convergence. Rows 1, 
2: Left and right eye receptive fields before convergence; Rows 4, 
5: The corresponding receptive fields after convergence; Rows 3, 6: 
Weights before and after convergence

Fig. 1 Distribution of spike count cross-covariances across neurons 
in macaque motor cortex. The low mean and large standard devia-
tion (blue dashed horizontal lines) of experimentally observed cross-
covariances between spike counts (left) are explained by a model 
network (right, shading indicates density of histogram) with a large 
spectral radius (R ~ 0.9) of the connectivity matrix. Red curves: ana-
lytical prediction for mean and ±1 standard deviation. Data from 
155 neurons mostly located in layer 5 of macaque motor cortex 
(M1). Data courtesy of A. Riehle and T. Brochier.
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Animal decisions not only reflect current sensory information but are 
also shaped by recent experience. There is however little understanding 
about the determinants of these history-dependent decision biases. We 
used rats in a novel two-alternative forced choice auditory discrimina-
tion task, in which the probability to repeat the previous stimulus cat-
egory was varied in blocks of trials. Rats adapted to this environment 
by developing a strategy that capitalized on the serial correlations of 
the stimulus sequence: a bias towards repeating the same response 
built up after correct repetitions, and conversely an alternation bias 
developed after correct alternations. Strikingly, both repetition and 
alternation biases disappeared after an incorrect trial, irrespective of 
the number of previous correct trials performed previously.
A GLM analysis revealed that rat decisions in each trial relied on: (1) 
the current sensory stimulus; (2) a lateral bias towards (away from) the 
side of recently rewarded (unrewarded) responses on the last 5–10 tri-
als, i.e. win-stay-lose-switch strategy; (3) a novel and strong transition 
bias that reinforced recent correct transitions (repetitions vs. alterna-
tions). Intriguingly the transition bias had no impact on choice after 
error trials. Subsequent analysis showed that the value of the bias 
was not reset but simply ignored after an error, and it was recovered 
after the first subsequent correct trial. Thus, the weight of the history-
dependent transition bias could be flexibly and transiently put aside 
after error choices when possibly the reliability of the internal model 
was questioned. This nonlinear effect could not be captured by the 
GLM fitted to both correct and incorrect trials and was not present on 
the lateral bias, i.e. it was specific of the transition bias. We thus built 
a latent generative model of rat decisions, whereby lateral and transi-
tions biases are updated at each trial, while the influence of the lat-
ter on current decisions is gated by a reward-dependent confidence 
signal. When fitted to the data, the model accounted quantitatively for 
all described behavioral effects: in particular, the absence of a transi-
tion bias after incorrect choices was due to a reset of the confidence 
signal. Because the value of the transition bias did not reset after errors 
but it kept the information about whether the animal would repeat or 
alternate, a single correct trial was sufficient to increase the confidence 

and recover the accumulated choice bias. Overall, we show that his-
tory-dependent biases in rodent perceptual choices reflect consistent 
strategic adaptations to behavioural outcomes.
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The prefrontal cortex (PFC), key for higher order cognitive processes, 
exhibits spontaneous activity that is altered in schizophrenia [1]. Cor-
tical acetylcholine (ACh) release modulates PFC activity via nicotinic 
acetylcholine receptors (nAChRs) [2] specifically expressed within a 
hierarchical circuit of inhibitory neurons within layer II/III [3]. Parval-
bumin (PV) interneurons, expressing α7 nAChRs subunits [2], target 
pyramidal cells axosomaticaly, exerting divisive effects on their activ-
ity. Somatostatin (SOM) interneurons, expressing both α7 and β2 
nAChRs subunits [2], target the dendrites of pyramidal cells, exerting 
substractive inhibition [4]. The α5 nAChRs subunits are expressed only 
by vasoactive intestinal polypeptide (VIP) interneurons, that preferen-
tially inhibit the SOM cells. In vivo two-photon imaging showed that 
neural activity of PFC in mice is characterized by synchronous ultra-
slow fluctuations, with alternating periods of high and low activity [5]. 
Genetic deletion of specific nAChRs subunits disrupted these ultra-
slow fluctuations, leading to changes in synchrony and duration of 
activity states. Furthermore, mice expressing a human polymorphism 
in the α5 nAChRs subunits (α5SNP) associated with high risk for nico-
tine addiction and schizophrenia [6, 7], show reduced spontaneous 
activity in the PFC that is reversed by nicotine [3]. Using a circuit mod-
eling approach, we studied the roles of distinct GABAergic interneu-
rons in the generation of synchronous ultra-slow fluctuations. In order 
to study the effects of substractive vs. divisive inhibition on bistable 
dynamics in the pyramidal neuron, by the SOM and PV interneuron 
populations respectively, we used population firing rate modelling 
incorporating both mechanisms [8], and simulated the effects of 
nAChRs knock outs. With our model, we could fully account for the 
changes seen in resting state dynamics under the genetic modifica-
tions. We further predict that SOM interneurons play dominant role in 
the changes of activity-state structure seen in mutant mice, and in the 
restauration of activity to basal levels recorded in α5SNP mice under 
nicotine application.
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Cortical spreading depression (CSD) is one of the most common 
abnormalities in biophysical brain functioning. We have proposed a 
minimalistic model that reproduces the main dynamical features of 
cortical spreading depression dynamics and takes into account CSD 
and cerebral blood flow (CBF) coupling. Despite the fact that there are 
many mathematical models describing the CSD, most of them do not 
take into consideration the role of redistribution of CBF. In contrast to 
previous modelling attempt [1] which was chosen as the template, we 
focus on the role of CBF redistribution during the formation and prop-
agation of wave front.
The flowchart of the developed model is shown in Fig. 1. The model 
includes six dynamical variables: activator v and inhibitor w, extracel-
lular potassium z, blood vessel radius r and upstream blood pressure p, 
available neuron energy u (see Fig. 1).
The main model features:
1) we have modified and extended the components of basic model [1] 
that stand for the energy balance;
2) the proposed model counts the relation between the extracellular 
potassium concentration and the radius of the nearby located blood 
vessel: we take into account the effect of spatial coupling (functional 
hyperemia) by means of weighted summation of vasodilatory “driving 
force” over some distance from neuron;
3) we propose a lumped description for hemodynamic spatial cou-
pling, being the direct result of blood flow redistribution between dif-
ferent areas fed from the single upstream arterial vessel.
Basing on the results of the numerical simulation we can conclude 
that the proposed model:
1) shows qualitatively reasonable results comparing with the experi-
mental data: the uncorrelated noise-induced firing at rest; the per-
sistent neuronal depolarization during the “active” phase of CSD; the 
depressed state afterwards, when model medium temporary losses 
the excitability and does not response on noisy stimuli;
2) reproduces main spatial patterns known for cortical spreading 
depression, migraine waves and spreading depolarization events 
observed in stroke and brain injuries;
3) predicts the formation of stationary dissipative Turing-like struc-
tures, formed due to the substantially different type of spatial relation –  
tissue perfusion. The role of perfusion in the formation of the struc-
tures was elucidated.

Fig. 1 The schematic representation of flowchart of the developed 
model
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The basic premise of this study is that the coherence of neural activity is 
required for the coordination of motor control. Motor control involves 
a number of brain centres, most notably the cortex, the basal ganglia, 
thalamus and cerebellum. How messages are coordinated between 
the different centres during complex movements is an open ques-
tion. Following [1], we examined the hypothesis that different neural 
sub-populations follow a “communication via coherence” hypothesis. 
That is, for two neural sub-populations to communicate their activity 
must be coherent and therefore exhibit some form of mathematical 
synchronization. As detailed in [2], we performed deep-brain meas-
urements on patients undergoing treatment for Parkinson’s disease 
(n = 6) and dystonia (n = 7). During a brief period after implantation 
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of the electrodes, we were able to record the activity from either the 
sub-thalamic nucleus (STN) or the globus pallidus interna (GPi). These 
recordings constitute local field potential (LFP) recordings. Patients 
were asked to perform one cycle of wrist movement lasting approxi-
mately one second in duration. The movements were executed either 
as externally cued or through self-initiation. Simultaneous to local field 
recordings measured at either the STN or GPi, electroencephalographic 
signals (EEG) were recorded over the motor cortex. For LFP, recordings 
were processed by subtracting the activity from adjacent electrodes. 
EEG was recorded in a bipolar montage (either C3-Cz or C4-Cz). We 
believe that the activity we record is local in origin and not due to vol-
ume conduction, or due to the use of a common reference.
Our results show that during movement, and only during movement, is 
there significant coupling between changes in the power of the activity 
with changes in coherence between the basal ganglia and the motor cor-
tex. The changes can happen such that for beta band activity (20–30 Hz) 
both power/coherence is high pre and post movement, but low dur-
ing course of movement. For gamma activity (30+ Hz), we observe the 
opposite: only during movement do we observe a coupling of increased 
power with increased levels of coherence either between GPi-cortex or 
STN-cortex. The coupling of power with coherence is not artifactual.
To better understanding the origins of these findings, we need to 
develop suitable mathematical models of coupled neural ensembles. 
We have been extending the Kuramoto model of coupled oscillators for 
application to this problem. Two distinct neural ensembles (in the basal 
ganglia and in the cortex) have neurons that are each interconnected. 
Moreover, the two ensembles are further connected to each other 
through additional links. What we can show is that an increase in power 
in either ensembles will lead to increased amplitude/phase coherence 
between the two ensembles just as found experimentally. This thus 
provides a first model of motor coordination between cortex and basal 
ganglia. Establishing the necessity for coherence in motor coordination 
suggests new strategies for neuromodulation similar to how functional 
electrical stimulation works to restore peripheral motor function.
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Communication through coherence (CTC) postulates that stimulus 
information transmission is enhanced between oscillating neural 
populations in a favorable phase relationship, and suppressed other-
wise. For example, in the case of visual cortical gamma-band synchro-
nization during selective attention, V1 spikes arriving to V4 during its 
excitability peaks should be much more likely to elicit further spikes, 
resulting in effective signal gating; V1 spikes arriving during 

excitability troughs should fail or at least be less effective in evoking 
further activity. Further, it has been observed that average gamma 
power increases with attention, however, this increase appears to 
occur in bursts, rather than a constant oscillation. If the CTC hypothesis 
holds, one should expect descriptive gamma phase and amplitude 
dependent modulations in stimulus information routing in V4.
To explore this idea, we analyzed neural data from a previous study [1], 
recorded from V4 superficial layers in macaques performing a visual spa-
tial attention task. The task required the animals to attend one of two 
dynamic stimuli over an extended time period. Crucially, each stimulus 
was superimposed with its own fluctuating luminance signature, irrel-
evant to the behavioral task. This allowed us to quantify the information 
content I of each stimuli conveyed by the physiological signal, by com-
puting spectral coherence between each stimuli’s luminance signal and 
V4 activity. To assess modulation effects at multiple population scales, 
we analyzed both LFP and spiking activity. Using gamma-band activ-
ity extracted from LFP, we dissected both LFP and spiking neural activ-
ity into phase/amplitude-specific components. We then computed the 
information contribution of each stimulus to these components, giving 
us the opportunity to assess phase/amplitude signal gating effects.
The results show that information routing is modulated by the gamma 
phase for both LFP and spiking activity. In LFP, we found the informa-
tion routing at excitability peaks Ipeak is significantly higher than at 
excitability troughsItrough for both attended and non-attended stimuli 
(Fig. 1a). We did not see this effect for spikes, which still show signifi-
cant gamma phase dependence but without a preference for a spe-
cific phase across recording sessions. Comparing the stimuli content 
during high gamma activity Ihighγ against low gamma activity Ilowγ, we 
found that the spiking activity exhibits significant gating increase for 
the attended stimulus and decrease for the non-attended stimulus 
(Fig. 1b), however, we do not find this effect in the LFP.
In summary, our study confirms basic predictions on the nature of 
selective information processing, namely its modulation in depend-
ence on phase and amplitude of LFP gamma activity. Surprisingly, 
consistent phase modulation was only found in LFPs, while consist-
ent amplitude modulation was only seen in spiking activity, indicating 
that the mechanisms implementing CTC are not yet fully understood. 
In particular, our results strongly motivate a refinement of current CTC 
models, requiring an approach encompassing different levels of com-
plexity capable of reproducing local spiking and global population 
activity from different laminar sources.

Fig. 1 a Peak vs trough γ phase info routing b high vs low γ ampli-
tude info routing
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eigenmodes. This allows analysis of activity and structure in terms 
of the natural dynamic modes of the system, rather than ones that 
are defined via statistical signal analyses that do not incorporate 
physiology.
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Research on canonical microcircuits conceptualizes findings of the 
recursive occurrence of neural populations and coupling patterns in 
vertically and horizontally structured divisions (i.e. cortical columns) of 
the cerebral cortex [1]. The profound description and examination of 
the link between canonical architectures and the associated function-
ality promises a better understanding of higher level functions which 
emerge from the interaction of canonical microcircuits. Fundamental 
for this interaction is the embedding canonical microcircuits in hierar-
chical networks [2], mediating both bottom-up and top-down signals 
to specific neuronal populations. Here, computational studies can help 
to formulate hypotheses about constitutive mechanisms, which are 
experimentally identifiable in the neural substrate.
We use a neural mass model [3], where a pyramidal cell population (Py) 
receives negative feedback from an inhibitory interneuron population 
(IIN) and positive feedback via a secondary excitatory population of 
interneurons (EIN), representing neurons in layer IV. We systematically 
apply transient afferent inputs, modeled by pulses of various magni-
tude and duration, as bottom-up signals to the EIN or as top-down sig-
nals to the Py [2] and monitor the behavior of the Py. These response 
behaviors are classified as: a) nonresponsive for sub-threshold transient 
deflections, b) transfer for supra-threshold transient deflections, and c) 
memory for sustained supra-threshold deflections and are mapped to 
the stimulation parameter range.
Single-channel stimulations, either bottom-up (to EIN) or top-down 
(to Py), lead to differential response behaviors, where strong and long 
bottom-up stimulations are preferably stored (memory behavior), in 
contrast to top-down signals, which predominantly show transient 
deflections. In a concomitant stimulation, constant top-down input 
modulates the model’s sensitivity to pulsed bottom-up stimulation in 
favor of the memory response behavior. We employ this modulatory 
influence in a hierarchical network (Fig.  1a) comprising two canoni-
cal microcircuits to show a conceivable neural mechanism for the 
dynamic adaptation of a perceptual threshold. In this configuration, a 
target stimulus is not able to excite a perceptual area, unless a priming 
stimulus tunes the network’s sensitivity.
The differential response behaviors to top-down and bottom-up stim-
uli indicate the functional role of separate input channels in canonical 
microcircuits. Exemplarily, we show one constitutive operation emerg-
ing from interacting microcircuits, but expect many more mechanisms 
relevant in cognitive disciplines like language or memory, such as 
stimulus selection or structure building computations. Further, the 
present results in the hierarchical setup demand a further evaluation 
in light of predictive coding where important findings of neural com-
munication have been put forward.
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Patterns of brain activity are observed to be highly conserved across 
states of arousal, and between task and non-task conditions. This 
strongly suggests that these are natural modes (eigenmodes) of 
the brain, which are excited in different ways under different cir-
cumstances. Neural field theory (NFT), which averages over brain 
microstructure, is ideally suited to deriving brain eigenmodes and 
interpreting them in terms of underlying physiology. It also provides 
means of systematically interrelating structure and function via these 
eigenmodes.
Here, NFT is used to predict the eigenmodes of the continuous corti-
cal surface, including interhemispheric connections. For comparison, 
eigenmodes of a discrete cortical connection matrix are calculated 
by standard matrix procedures. Mode energies and symmetry prop-
erties are used to constrain interhemispheric conductivities and 
physiological properties of the cortex. Eigenmodes are then used to 
derive underlying effective and functional connectivities from system 
transfer functions and two-point correlations of background activity, 
respectively.
Neural field eigenmodes are shown to occur in a hierarchy closely 
related to that of the eigenmodes of a sphere, with added symme-
tries induced by bihemispheric structure. A close correspondence is 
also found with the eigenmodes of an anatomical connection matrix, 
confirming the validity of the neural field approach. The results dem-
onstrate that the brain is in a near-critical state, consistent with esti-
mates from electroencephalographic spectra. It is found that each 
hemisphere receives near-balanced inputs, with approximately 15% of 
net inputs coming from the contralateral hemisphere, 73% from the 
ipsilateral one, and 12% from the environment, meaning that it is in a 
highly introspective state. Most activity is predicted to be in symmetric 
modes, in accord with experiment.
NFT allows structure and activity to be unequivocally interrelated, 
including the correlations used to define functional connectivity 
matrices. Eigenmode decomposition of these matrices enables under-
lying effective connectivities to be systematically derived from func-
tional connectivities, and vice versa, and related to resulting activity 
patterns. This means that relatively easily observed correlations can 
be used to infer both average structure and the strengths of effective 
connectivities that it supports in a noninvasive manner.
In summary, physiologically-based NFT thus explains and unifies 
multiple phenomena relating to structure, function, and activity via 
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Fig.  1 a Adaptive dynamical shift of a perceptual threshold in a 
hierarchical configuration of two interacting neural mass models, 
mimicking canonical microcircuits. b A bottom-up target input 
(light grey) excites the lower area only after previous application of 
a priming stimulus (dark grey)

with lateral connections, where each column learns feedforward con-
nections independently and learns cross-column lateral connections 
according to Hebbian rules. The lateral inputs target distal dendritic 
segments. Although they are not strong enough to directly activate 
a neuron, neurons with both lateral input and feedforward input will 
fire earlier and prevent other neurons from responding [1]. The cross-
columnar connections bias each column to form a representation 
that is consistent with the partial knowledge of all the interconnected 
columns. We show that objects can be recognized faster and that 
each cortical column can store more objects by using cross-column 
connections.
The model is consistent with a large body of anatomical and physi-
ological evidence and provides a number of predictions that can be 
tested in future experiments.
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The neocortex is organized in cellular layers. Connections between lay-
ers run mostly perpendicular to the surface of the neocortex, which 
suggests a “columnar” pattern of activation across layers. The cells in 
some layers also send their axons across long distances parallel to the 
surface of the neocortex, which suggests a “laminar” pattern of acti-
vation across multiple columns. The vertical and horizontal spread of 
axons is a ubiquitous feature of all neocortical regions.
In this study, we propose a network model that utilizes both intra-col-
umn and cross-column connections for robust object learning and rec-
ognition (Fig. 1). The model consists of a set of cortical columns, where 
each cortical column processes a different subset of the sensory input 
space. An object consists of a set of component features at particular 
locations on the object. Each cortical column learns an object by form-
ing feedforward connections from its component features to a set of 
active neurons in a different cellular layer. After learning, sensation of a 
sequence of object features leads to activations of the corresponding 
neural population representing the object.
Since features can be shared among multiple objects, information 
received by a single cortical column is often ambiguous. The model 
uses auto-associative connections to integrate many sensations over 
time and can converge onto unique object representations once suf-
ficient feature are sampled. The recognition speed and accuracy can 
be improved by simultaneously considering multiple cortical columns 

Fig. 1 a We consider the problem of object recognition with a set 
of cortical columns. Each column receives sensory input from a 
different sensor (e.g., different finger). A first layer of the network 
transforms the raw sensory input into sparse distributed repre-
sentations that corresponds to object features. The second layer 
receives feedforward inputs from the first layer. It recognizes an 
object by converging onto a stable activation pattern through lat-
eral connections. b The recognition speed increases as a function 
of column number. c Retrieval accuracy of object during testing 
vs. the number of learned objects. More objects can be learned 
with networks with more cortical columns
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In partial epilepsy, seizures originate in a local network, the so-called 
epileptogenic zone, before recruiting other close or distant brain 
regions. Correctly delineating the epileptogenic and the propaga-
tion zone is essential for successful resective surgery. In particular, the 
stereotaxic EEG (SEEG) is used to edge the resection zone. Neverthe-
less, the propagation pathways of epileptic seizures are still largely 
unknown. We utilize a specific dynamical model for epilepsy, the Epi-
leptor model [1], to predict the recruitment network given the seizure 
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origins and the structural brain connectivity. Thus, we try to under-
stand the role played by the topology in constraining the recruitment 
process and we suggest a paradigm for epileptic surgery that relies 
on minimal invasiveness and maximum effectiveness. In particular, 
we schematize the brain network dynamics in terms of neural mass 
models able to captures the details of the autonomous slow evolution 
of interictal and ictal phases; these mass models are coupled among 
them and the coupling terms model the effective presence of nerve 
pathways and fibers among different brain regions [2]. In this frame-
work, it is possible to identify the minimal number of local discon-
nections of the epileptogenic zone that are necessary to stop seizure 
propagation via the application of linear stability analysis and, there-
fore, to define the optimal set of links to be cut in order to stop seizure 
propagation (see Fig. 1). In order to demonstrate the potential use of 
this framework in practice, we apply our methods to structural con-
nectivity matrices derived from patients affected by partial epilepsy. 
In all cases a partial disconnection, that counts for the resection of 
few pathways, is sufficient to stop seizure activity in the brain. There-
fore, we demonstrate that seizure spreading is thus supported and 
enhanced by the underlying topology and that a disconnection pro-
cedure, if well addressed, can become a fruitful procedure to improve 
the success rate of epilepsy surgery.

to potentially encode features of the experimental paradigm, like 
changes in external input or different task phases. Changes in the fir-
ing rates may be sudden or gradual, and their time scale and onset 
may reflect information regarding neural computations, such as learn-
ing [1] or the accumulation of sensory evidence [2].
Here we develop an approach for detecting and parametrising mul-
tiple changes in multivariate spike count data within the statistical 
framework of State Space Models (SSM) [3]. The model assumes a non-
linear, nonstationary, autoregressive Gaussian process that captures 
the underlying latent neural dynamics. However, given their discrete, 
nonnegative nature, assumptions of normality are not guaranteed 
to produce consistent estimates of spike count statistical moments. 
Instead, the Gaussian process generates spike counts by a Poisson 
observation function. Both latent trajectories in phase space and 
latent model parameters, in addition to observation model param-
eters, are estimated by a 3-stage Expectation-Maximisation (EM) pro-
cedure [4]. The latter relies on Newton’s method [5] to maximise, under 
constraints, a global Laplace approximation [6] of spike-count data’s 
log-likelihood, given the SSM and its parameters. The dimensional-
ity of the latent model equals the number of unknown nonstationary 
events, termed change points, and is selected by a cross-validation 
procedure. Observations, on the other hand, are generally of a much 
higher dimension than the latent dynamics. Due to this substantial 
dimensionality reduction [7], latent trajectories, thus, offer a parsimo-
nious representation of the most relevant features in neural dynamics.
The estimation procedure is first tested on simulated data, to assure 
that the latent states and model parameters are correctly identified 
in comparison to the ground truth. As a real data example, the model 
is fitted to multiple single unit recordings from rat medial prefrontal 
cortex neurons during an operant rule switching task. The resulting 
reconstruction of the underlying dynamics will allow matching the 
neural correlates of learning to their behavioral counterpart, by relat-
ing behavioral changes to population-wide change points, as esti-
mated by the model.
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Fig.  1 a Standard resection technique, where the entire epilep-
togenic zone (EZ) is removed during surgical operation. Blue 
links represent the outgoing connections of the EZ and are com-
pletely removed during the current surgical procedures. b Lesion-
ing depicts the minimal number of links that are sufficient to be 
removed (magenta) in order to stop the seizure, versus the total 
number of outgoing links from the EZs (blue) that are removed 
during the resection of an entire EZ. Cyan links represent in both 
panels the full connectivity of the network
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Neural data often consist of multiple single unit recordings in the 
form of spike count time series. These time series are often highly 
nonstationary, where statistical moments, such as firing rates, vary 
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Geppetto (geppetto.org) is an open-source web-based platform to 
explore and simulate neuroscience data and models. The platform, 
originally designed to support the simulation of a cell-level model of C. 
elegans as part of the OpenWorm project [1], has grown into a generic 
framework suitable for various neuroscience applications, offering out 
of the box solutions for data visualisation, integration and simulation. 
Geppetto is today used by Open Source Brain (opensourcebrain.org) 
(Fig.  1a), to explore and simulate computational neuroscience mod-
els described in NeuroML version 2 with a variety of simulators and 
by the Virtual Fly Brain (virtualflybrain.org) (Fig.  1b) to explore and 
visualise anatomy (including neuropil, segmented neurons and gene 
expression pattern data) and ontology knowledge base of Drosophila 
melanogaster. Geppetto is also being used to build a new experimen-
tal UI for the NEURON simulation environment [2, 3] (Fig. 1c) based on 
Python and Jupyter. WormSim (wormsim.org) (Fig.  1d) embeds Gep-
petto to let users explore dynamic mechanical and electrophysiologi-
cal models of C. elegans produced by the OpenWorm project. Geppetto 
is capable of reading and visualising experimental data in the NWB for-
mat (nwb.org) to allow experimental and computational neuroscien-
tists to share and compare data and models using a common platform. 
Geppetto is freely available, well documented and has an active user 
community. Interested potential users can try out the latest version of 
the platform at live.geppetto.org.

specific settings. Knowledge of the environment-specific set of place 
fields (map) allows for the application of Bayesian statistics to infer 
the position of the rodent from neuronal activity (Fig. 1b, c). Likewise, 
functional-connectivity models, based only on neural correlations, 
i.e. with no knowledge of place fields or position, can identify the 
expressed map as a function of time (Fig. 1a) [1]. We apply both these 
inference procedures to CA3 recordings from a recent “teleportation” 
experiment [2], in which instantaneous switches between the iden-
tity of two familiar environments trigger the instability of the recalled 
memory state, which flickers back and forth between the two corre-
sponding maps (Fig. 1a, e). Our analysis shows that the rat position is 
not accurately inferred during the unstable periods, under conven-
tional approach relying on brain processing only the external input 
information (i.e. environment cues, Fig.  1b, d: red curve). However, if 
the position is inferred using the template reflecting the decoded 
inner state of the network, the position error is significantly reduced, 
reaching values comparable to the stable conditions (Fig.  1c, d: blue 
curve). Results suggest that position is robustly encoded in CA3, even 
during periods of conflict or ambiguity in the input information result-
ing in global map changes on fast dynamical time scales.

Fig. 1 Geppetto in different deployments
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Place cells in hippocampus exhibit sharp spatially-related firing fields, 
which are formed when the animal explores new environments and 
are retrieved, as memories, each time the rat is placed back in those 
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Fig. 1 Position inference during flickering instabilities. a Decoded 
environment (log-likelihood difference) as a function of time after 
a teleportation in CA3. Note the flickering dynamics in the 0–5  s 
interval. b Inferred vs. real positions of the animal; place fields cor-
responding to light conditions were used for the inference. Freely-
moving rat in a 60 × 60 cm box. c Same as B with position inferred 
using the place fields associated to the decoded map (sign of ∆L in 
panel A). d Positional errors averaged over 15 teleportation events; 
dashed line indicates the level of error for stable conditions (no 
light switches). e Fraction of flickering time bins (∆L-decoded map 
differs from light conditions) as a function of time after the light 
switch
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