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Investigating the impact of electrical 
stimulation temporal distribution on cortical 
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Abstract 

Background:  The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and 
has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the 
response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that 
stimuli temporal distribution is an important, if often overlooked, parameter.

Results:  In this study we investigated how cortical networks plated over micro-electrode arrays respond to differ-
ent stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging 
from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input 
sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We 
then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting 
frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no 
preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in 
case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated 
to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and 
output sequences was independent from average input frequency.

Conclusions:  Our results point out that the preference for a scale-free distribution of the stimuli is observed also at 
network level and should be taken into account in designing more efficient protocols for neuromodulation purposes.
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Background
Neurons are intrinsically noisy systems, as stochastic 
processes regulate neuronal function at many different 
spatial and temporal scales, from genetic and metabolic 
noise all the way up to firing activity on the scale of the 
whole brain [1–3]. This evidence suggests that noisy 
stimulation might be far more effective at driving neu-
ronal networks because it mimics natural sensory input. 
In fact, variability of neural responses to stimulation is 

reduced if sensory input is natural or natural-like [4–9]. 
Spike trains of sensory neurons tend to become more 
reliable if inputs present a scale-free structure, akin to 
that observed in most natural signals [10–12]. Simi-
larly, isolated neurons respond with unpredictable pat-
terns when presented with constant inputs but observed 
responses become almost perfectly reproducible if the 
neuron is stimulated with a natural-like signal [13, 14]. 
Early works focused on short timescales (i.e. a few sec-
onds); more recently, it has been demonstrated that even 
at longer timescales single neuron responses synchronize 
with input sequences, as long as those sequences present 
a scale-free temporal structure [15]. Irregular stimulation 
protocols have been recently also proposed in the con-
text of deep brain stimulation [16], aimed at improving 
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current clinical outcomes in the treatment of pathologies 
(e.g. stroke) that benefit from the application of targeted 
electrical stimulation.

In this paper we aimed at filling the gap in scale 
between complete systems (i.e. whole brain) and isolated 
neurons by investigating the response patterns of neu-
ronal networks when presented with input sequences 
exhibiting different temporal structures. To this end, 
we used primary cortical cultures grown over micro-
electrode arrays (MEAs). MEA devices, introduced at 
the end of the 70s [17] allow to record and stimulate a 
neuronal network at many different locations at once and 
to observe it over long timescales [18]. Dissociated cor-
tical cultures retain several interesting functions of the 
original brain tissue, and, during in  vitro development, 
they start showing spontaneous activity at about 7  days 
in  vitro, DIVs [19–21]. Then, network activity gradually 
changes, first as single spikes gather into bursts, gener-
ally towards the end of the second week in  vitro, and 
later featuring a highly complex pattern of synchronized, 
aperiodic network bursts [22–24], which represents the 
mature state of a cortical network.

By taking advantage of MEA technology, we designed 
two experimental protocols, based on electrical stimula-
tion of cortical cultures, aimed at answering two main 
scientific questions. Specifically, we first asked whether 
cortical networks’ activity is more easily entrained by 
irregular sequences of stimulus pulses than by regular 
sequences, as it happens for isolated neurons [15]. To 
this end, we designed stimulation sequences in which 
inter-pulse intervals followed a 1/fβ distribution, for dif-
ferent values of β, ranging from 0 (i.e. corresponding to 
white noise with no correlation in time) to ∞ (i.e. fixed-
frequency). As proposed in the paper by Gal and Marom 
[15], we measured the correlation between instantane-
ous stimulation and firing frequencies to quantify the 
network capability to follow different temporal patterns 
of pulses. Furthermore, we investigated the interplay 
between stimulation frequency and stimulation regularity 
to understand whether regular and irregular sequences of 
stimuli would present the same response profiles, at dif-
ferent average stimulation rates.

Methods
Neural preparation
As experimental model for our research, we used pri-
mary cortical cultures from embryonic rats. All experi-
mental procedures and animal care have been approved 
by the IIT Animal Welfare Body and by the Italian Min-
istry of Health (authorization 110/2014-PR), in accord-
ance with the National Legislation (D.Lgs. 26/2014) and 
the European legislation (European Directive 2010/63/
EU).

The procedures for preparing and maintaining neu-
ronal cultures were described in details in previous stud-
ies from our group [25]. Briefly, embryos were recovered 
from CO2-anaesthetized pregnant rats at embryonic day 
18 (Sprague–Dawley derived by Charles River in 1955, 
IGS). The cortices were then exposed to chemical and 
mechanical dissociation. Afterwards, cells were plated 
onto 60-channel MEA devices (Fig.  1a, top left panel) 
previously coated with poly-d-lysine and laminin, at the 
final concentration of 1500  cell/µl (Fig.  1a, bottom left 
panel). They were maintained on MEA devices contain-
ing 1 ml of nutrient medium (i.e. serum free Neurobasal 
medium supplemented with 2% of B27, 1% of Glutamax 
and 0.04% of Gentamicin), in a humidified incuba-
tor with a controlled atmosphere of 5% CO2–95% air 
at 37  °C. The cultures were kept in the incubator until 
they reached a mature stage of the development, around 
3–4 weeks in vitro (Fig. 1a, right panel), as reported in 
previous studies [22]. Half of the medium was changed 
weekly.

In our cortical cultures we have percentages of cells 
similar to what found in the intact cortex (i.e. 70–80% 
excitatory and 20–30% inhibitory neurons [26]), as 
reported by previous studies [27–29]. It is worth under-
lining that an important (and fundamental) element of 
our cultures is the presence of glial cells. In our cultures, 
neurons and glia grow together and these environmen-
tal conditions allow cortical neurons to show excellent 
growth and robust synaptic connectivity [22].

Experimental set‑up
As stated in the previous paragraph, we used MEAs as 
recording devices. In the MEA, planar microelectrodes 
are arranged in an 8 ×  8 layout excluding corners and 
one large ground electrode, for a total of 59 record-
ing electrodes (30  μm diameter, 200  µm inter-electrode 
distance).

The experimental set-up is based on the MEA 60 sys-
tem, consisting of the MEA itself containing the neu-
ral preparation, a mounting support with integrated 
60-channel preamplifiers and filters, a stimulus genera-
tor (STG 2004) and a desktop computer with the soft-
ware tools MC_Rack and MC_Stimulus, which were used 
for on-line signal visualization, raw data recording and 
stimulus sequence delivery. All the mentioned devices 
and software are commercially available and produced 
by MultiChannel Systems, Reutlingen, Germany. Each 
recorded channel was sampled at a frequency of 10 kHz.

To reduce thermal stress of the neurons during each 
experiment, MEAs were kept at 37  °C by means of a 
controlled thermostat (MultiChannel Systems) and cov-
ered by a custom–made poly(dimethylsiloxane) cap to 
avoid evaporation and to prevent changes in medium’s 
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osmolarity. Additionally, we have settled a custom cham-
ber to maintain a controlled atmosphere (i.e. gas flow of 
5% CO2 and 95% O2 +  N2) during the entire recording 
time, as reported in previous papers [30].

Generation of stimuli and experimental protocols
In order to test the behavior of cultures when provided 
with inputs of varying regularity, stimulation trains with 
an increasing degree of regularity had to be designed. To 
this end, we took advantage of the concept proposed in 
literature in previous papers [15, 31, 32]. Our stimulation 
sequences consisted of trains of electrical pulses whose 
time intervals followed a 1/fβ distribution. Intuitively, 
an increase in the parameter β resulted in an increase of 
the regularity of the corresponding sequence: for β = 0, 
subsequent intervals were uncorrelated; for 0  < β  < ∞, 
neighboring time intervals presented an increasing 
amount of correlation and β = ∞ resulted in a perfectly 
regular sequence (i.e. time intervals have all the same 
length). More in detail, the inter-pulse interval series 
presented in Fig. 1b result from the five different values 
of β considered in this work (0, 0.5, 1, 1.5 and ∞, rep-
resented with green, red, blue, orange and cyan curves). 
The autocorrelation functions of the stimulation trains 
and their power spectral densities (PSD) are reported in 
Fig. 1, panels b2 and b3 respectively. The basic stimulus 
used has remained constant throughout all experiments 
(biphasic voltage pulse, 300  µs in half-length phase and 
750 mV of half-amplitude). We made this choice follow-
ing the results presented by Wagenaar [33]: according 
to his study, those parameters were the most effective in 
evoking responses in cultured neurons on MEAs.

The stimulation trains described above are entirely 
defined by the sequence of inter-pulse intervals: in 
order to generate the stimulation patterns, interval 
sequences with the proper features had to be produced. 
In particular, a sequence of N stimuli is defined by the 
length of the (N −  1) intervals between them. There-
fore (N − 1) uncorrelated samples are extracted from a 
Gaussian distribution. This sequence is then filtered in 
the frequency domain with an appropriate filter (i.e. a 
signal whose PSD is a line with slope −β in a log–log 
plot). The resulting sequence then undergoes a linear 
transformation to ensure that standard deviations and 
mean values match with the desired specifications. All 
the stimulus sequences have been generated by a cus-
tom script developed in MATLAB® (The Mathworks, 
Natick, MA, USA).

We performed two experimental campaigns, accord-
ing to the main scientific questions we wanted to address 
(cf. “Background”), for a total of 17 experiments between 
22 and 35 DIVs. The first experimental protocol, named 
‘protocol 1’, graphically depicted in Fig.  1c1, had a total 

Fig. 1  Experimental model and stimulation protocols. a Cortical 
neuronal network grown over a micro electrode array (MEA). Top left 
A typical 60-channel MEA produced by multichannel systems (MCS, 
Reutlingen, Germany). The glass ring is necessary to contain cell cul-
ture medium. Bottom left Dissociated cortical neurons over substrate-
embedded planar microelectrodes of a MEA. The electrodes, placed in 
a square 8 × 8 layout (the four corners are missing), are 30 µm wide, 
with an electrode spacing of 200 µm. Right Zoom of the cultured corti-
cal network showing cells coupled to microelectrodes and randomly 
developing their neurites and synaptic connections (age of the cul-
ture: 21 days in vitro, DIV). b Stimulation regimes. b1 We used trains of 
electrical pulses whose time intervals followed a 1/fβ distribution, with 
β assuming values from 0 (i.e. white noise stimulation) to ∞ (perfectly 
regular stimulation). Depicted here are the profiles of the instantane-
ous stimulus rate (ISR, see text—rescaled for comparison) for each 
value of β: β = 0 (green trace), β = 0.5 (red trace), β = 1 (blue trace), 
β = 1.5 (orange trace) and β = ∞ (light blue trace). Autocorrelation 
functions (b2) and PSD (b3) of irregular stimulation sequences (same 
color code as in b1). c Adopted experimental protocols. c1 1st experi-
mental protocol (protocol 1 throughout the manuscript): three phases 
of spontaneous activity [BAS1—1 h, BAS2—30 min and BAS3—1 h] 
are interleaved by two stimulation sessions [STIM1 and STIM2] lasting 
50 min (i.e. 10 min × 5 different β values [0, 0.5, 1, 1.5, ∞], delivered in 
random order). c2 2nd experimental protocol (protocol 2 through-
out manuscript): three phases of spontaneous activity [BAS1—1 h, 
BAS2—30 min and BAS3—1 h] are interleaved by one session of 
off-line analysis [ANALYSIS] and two stimulation sessions [STIM1 and 
STIM2] lasting 60 min (i.e. 10 min × 2 different β values [1 and ∞] × 3 
stimulation frequencies [fMBR/2, fMBR, fMFR]. For details see paragraph 2.3 
“Generation of stimuli and experimental protocols”)
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duration of 250 min, which were divided in the following 
recording phases:

• • Phase 1: 1 h of spontaneous activity recording [BAS1];
• • Phase 2: 50 min of electrical stimulation from a selected 

channel, chosen from those that were active and that 
evoked responses in the culture. This step is further 
divided into 5 sub-phases of 10  min each, one for 
each value of the parameter β, delivered in random 
order [STIM1];

• • Phase 3: 30  min of spontaneous activity recording 
[BAS2];

• • Phase 4: 50  min of electrical stimulation, repeating 
phase 2 [STIM2];

• • Phase 5: 1 h of spontaneous activity recording [BAS3];

All stimulation sequences were designed according to 
the procedure described above in order to have an aver-
age inter-stimulus interval of 2  s and, where applicable 
(i.e. sequences with β < ∞), a standard deviation of 0.5 s. 
We performed a total of 9 experiments by using this pro-
tocol. In a set of pilot control experiments, we delivered 
the same stimulation protocol from two different chan-
nels: preliminary results indicated no significant differ-
ences between the two, so we decided to test a single 
channel per culture in the final set of experiments.

To respond to our second scientific question, we 
designed a second experimental protocol, named ‘proto-
col 2’ and graphically depicted in Fig.  1c2, which had a 
total duration of 330 min, which were divided in the fol-
lowing recording phases:

• • Phase 1: 1 h of spontaneous activity recording [BAS1];
• • Phase 2: About 1 h reserved for analysis. During this 

time, spontaneous activity of the culture is analyzed 
(cf. “Data analysis”—“‘On-the-fly’ analysis for proto-
col 2”), [ANALYSIS];

• • Phase 3: 1  h of stimulation from an active chan-
nel. Six stimulation sequences are delivered during 
this time. Those sequences alternate in regularity, 
between β values of ∞ and 1, and present an increas-
ing stimulation rate: the first pair of sequences has 
an average inter-stimulus interval equal to half the 
average inter-burst period observed in the sponta-
neous recording (i.e. mean stimulation rate—MSR 
equal to fMBR/2, where MBR stands for mean bursting 
rate), while the second and third pairs of stimulation 
sequences have an inter-stimulus interval match-
ing, respectively, the computed average bursting 
rate (MSR =  fMBR) and the mean firing rate—MFR 
(MSR = fMFR), [STIM1];

• • Phase 4: 30  min of spontaneous activity recording 
[BAS2];

• • Phase  5: 60  min of electrical stimulation, repeating 
phase 3 [STIM2];

• • Phase 6: 60  min of spontaneous activity recording 
[BAS3];

While average inter-stimulus intervals varied as 
described above, standard deviations were kept constant 
at 0.5 s. We performed a total of 8 experiments using this 
protocol.

Data analysis
Data analysis was performed off-line through MATLAB, 
using an ad-hoc developed software package named 
SpyCode [34]. It provides a working environment able 
to perform efficient data management and processing 
since it includes a rich group of common signal analy-
sis tools. Briefly, raw data from the acquisition sys-
tem were imported in MATLAB and spike detection 
was performed using the Precise Timing Spike Detec-
tion algorithm [35]. Once spikes have been identified, 
we computed, for each recording, the mean firing rate 
(MFR, expressed as number of spikes/s), a first-order 
statistical indicator that quantifies the average firing fre-
quency in a specific time window. We used this param-
eter to evaluate the level of electrophysiological activity 
of the network during the basal ‘spontaneous’ phases (i.e. 
BAS1, BAS2, BAS3 in Fig. 1c1, c2). MFR values of each 
experiment were normalized with respect to the popu-
lation average computed during the first spontaneous 
phase (i.e. BAS1) [21, 36]. Then, in order to detect and 
evaluate the average effect of a stimulation pattern on 
the spike activity, we computed the post-stimulus-time 
histogram (PSTH) [37, 38]. Intuitively, the PSTH shows 
the probability of firing (or the instantaneous firing rate) 
as a function of time in a short window after stimulus 
onset.

Cultured neurons, in addition to individual spikes, also 
exhibit more complex patterns of activity called bursts, 
which are dense sequences of closely packed spikes [39, 
40]. The bursting behavior changes along the in  vitro 
development reaching stability between the third and 
fourth week [22]. Bursts come in different forms, so the 
bursting rate is not sufficient to describe the “burstiness” 
level of a culture [41]. To this end, during the spontane-
ous activity phases (i.e. BAS1, BAS2, BAS3), we quanti-
fied the number of spikes within bursts. The ‘spike in 
burst’ parameter was calculated as the ratio between the 
number of spikes within bursts and the total number of 
spikes for each recording session. Burst detection was 
performed by using an algorithm based on ISI criteria 
developed in our lab a few years ago [42], which has been 
recently recognized as one of the most reliable available 
in the literature [43].
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To quantify the global variability of responses during 
different stimulation regimes (i.e. β values), we computed 
the local variation with refractoriness (LvR) parameter, 
which has been successfully applied to classify firing pat-
terns based on (ir)regularity and it is not confounded by 
the firing rate [44].

‘On‑the‑fly’ analysis for protocol 2
For the second protocol, we performed an ‘on-the-fly’ 
analysis aimed at evaluating the basic statistics in terms 
of firing and bursting activity of the measured culture. 
The obtained results were then used to define the MSR 
to be used in the course of the experiment (cf. “Genera-
tion of stimuli and experimental protocols”). Specifically, 
we performed two analyses. First we computed the MFR 
of the first hour of spontaneous activity of the culture. 
The obtained value was used as MSR for the sequence 
of stimulation referred to as fMFR. On the same record-
ing, we performed network burst detection, following 
the algorithm developed by van Pelt et al. [45, 46]. Intui-
tively, a network burst consists of synchronized activity 
occurring simultaneously on most of the active channels 
of the MEA. In particular, van Pelt’s method is based on 
the assumption that, during a network burst, both fir-
ing rate in individual channels and number of active 
sites increase. More in detail, this algorithm consists in 
splitting spike trains of all recorded channels in 25  ms-
long bins. Each time bin is then attributed a ‘bursting 
value’ equal to the product of the total number of spikes 
detected within each bin and the number of electrodes 
recording at least 1 spike within the same time interval. 
This value is then compared to a user-defined threshold 
and a network burst is identified each time the product 
defined above exceeds this threshold. In our case, we use 
thresholds around or above 100 depending on network 
activity [22]. Once the network bursts were detected, 
we calculated the rate of occurrence of those events and 
designed two sequences of stimuli with MSR equal to the 
average network burst rate (i.e. fMBR) and half of that (i.e. 
fMBR/2), respectively.

Correlation analysis
In order to evaluate the correlation between the firing 
profile of a network and the stimulation profile delivered 
during each experimental session, spike trains were ana-
lyzed to compute the ‘network-wide firing rate’. This sig-
nal is obtained by computing the sum of all spike trains to 
obtain a cumulative spike train, and then by binning it at 
1-ms time resolution (cf. Additional file 1: Figure S1A).

The resulting signal was low-pass filtered to obtain 
the instantaneous firing rate (IFR). Specifically, the fil-
ters used in this work are Gaussian windows of width T 

and α equal to 2.5 (where α is defined as the reciprocal 
of the standard deviation). A constant value is then sub-
tracted from all coefficients to obtain a mean value equal 
to zero. Four different window lengths T have been tested 
to investigate behaviors at different time scales: 2, 4, 8 
and 16 s. Stimulation trains are filtered in the same man-
ner to obtain the instantaneous stimulation rate (ISR). 
We then used cross-correlation analysis to evaluate the 
effect of local stimulation on the evoked spiking activ-
ity of the network: we computed the I/O correlation (i.e. 
the cross-correlation between ISR and IFR), for different 
values of β and for different filter lengths. A slight vari-
ant of Pearson’s coefficient (PC) has been used to evalu-
ate I/O correlation: since response delay to stimulation 
was unknown, we took as PC the maximum value of 
normalized cross-correlation in a 2-s window across its 
0-lag point, instead of the 0-lag value itself as per stand-
ard definition. For simplicity, this measure has been 
addressed as Pearson’s coefficient in the rest of the paper, 
even though it is a slight misnomer. Most of the figures in 
this paper report IFRs and ISRs in arbitrary units: as they 
are only used to compute Pearson’s coefficient, the actual 
scale is irrelevant.

Each experiment performed with protocol 1 resulted 
in 2 series of 20 values of PC (combination of 5 values of 
β and 4 values of T, while each series was obtained for 
a repetition of the stimulation sequences—cf. “Genera-
tion of stimuli and experimental protocol”). For protocol 
2, each experiment provided 2 series of 24 values of PC 
(3 regular stimulation sequences, 3 irregular stimulation 
sequences, each recording analyzed with 4 filter win-
dows. 1 series obtained for each repetition).

Statistics
All data presented are expressed as mean  ±  standard 
error of the mean, if not differently specified. All box plots 
represent mean (small square), median (line), 25th–75th 
percentiles (box), and 5th–95th percentiles (whiskers). 
Statistical tests were employed to evaluate the significant 
difference among different experimental conditions. The 
normal distribution of experimental data was assessed 
using the Shapiro–Wilk normality test (p level 0.05). 
According to the distribution of the data, we performed 
either parametric (e.g. t test, paired t test, ANOVA) or 
non-parametric (e.g. Kruskal–Wallis ANOVA on ranks, 
Mann–Whitney U test) tests and p values <0.05 were 
considered significant. The post hoc Bonferroni (for the 
ANOVA) or Tukey’s (for the Kruskal–Wallis) test was 
used to assess differences among multiple conditions. Sta-
tistical analysis was carried out by using either OriginPro 
(OriginLab Corporation, Northampton, MA, USA) or 
SigmaPlot (Systat Software, Inc. San Jose, CA, USA).
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Results
Time‑averaged responses are not affected by temporal 
distribution of stimuli
In this paper, we used dissociated cortical cultures plated 
over MEAs in order to understand whether and how 
temporal regularity affects the network capability to fol-
low an external stimulation. To reach our objective, we 
designed two experimental protocols (i.e. protocol 1 and 
protocol 2, cf. “Methods”, “Generation of stimuli and 
experimental protocols”) aimed at answering two main 
scientific questions: (1) Can we find a preference for 
stimulus irregularity at the network level? (2) If such a 
preference exists, is it affected by the average stimulation 
frequency?

We first evaluated the level of firing and bursting of our 
networks by computing MFR and the spike in burst ratio 
during the three spontaneous activity recording phases of 
each protocol (i.e. BAS1, BAS2, and BAS3). No statistical 
difference was observed (cf. Additional file 1: Figure S1, 
panel B for protocol 1 and panel C for protocol 2), indi-
cating that the network activity of our cultures was sta-
ble all along the experimental time. Moreover, no short/
medium-term effect on the level of firing and bursting 
was induced by our stimulation sequences.

Figure  2 presents data relative to PSTH analysis (cf. 
Additional file  2). In particular, from the upper panels 
of Fig.  2 (panels a1 for STIM1 and a2 for STIM2), it is 
possible to note how averaged network responses fol-
lowing irregular stimulation (in this case, for β = 1, black 
trace) show a profile that is qualitatively very similar to 
what can be observed after fixed-frequency stimulation 
(β = ∞, light gray trace). Furthermore, the PSTH pro-
files relative to the first (Fig.  2a1) and second (Fig.  2a2) 
stimulation phases, are almost identical, suggesting that 
responses do not change on average upon the applica-
tion of short periods of low-frequency stimulation. This 
is reinforced by quantitative population analysis shown in 
the following panels of Fig. 2. In Fig. 2b1 (STIM1) and b2 
(STIM2) no statistically significant difference is observed 
among the average number of evoked spikes obtained for 
different β values (p > 0.05, one-way ANOVA, post hoc 
Bonferroni correction). Additionally, no difference was 
found between STIM1 and STIM2 for protocol 1 for all 
values of β (p  >  0.05, paired t test). A similar observa-
tion can be made for Fig. 2c, relative to protocol 2. The 
number of evoked spikes does not change as a function of 
stimulation regularity, both during STIM1 (panel c1) and 
STIM2 (panel c2), i.e. no significant differences between 
β = 1, dark bars, and β = ∞, light gray bars, for STIM1 
and STIM2; no significant differences between STIM1 
and STIM2 for each β value, p  >  0.05 paired t-test. We 
also computed the LvR of each responsive channel in 
each stimulation regime. We did not find any significant 

difference among the values of ß, meaning that the aver-
age variability of response firing patterns is constant in 
the different conditions. We performed this analysis for 
both STIM 1 and STIM 2 and obtained the same results 
(see Additional file 1: Figure S2).

On the other hand, a change in the average MSR causes 
a change in the observed response amplitude, which 
results to be significant only in case of regular stimula-
tion (i.e. β = ∞): longer inter-stimulus intervals lead to 
more intense responses, on average. These results pro-
vide evidence that the average response amplitude to 
stimulation is largely unaffected by stimulation regularity. 
In the following, we will investigate whether the distribu-
tion of responses in time, conversely, is affected by stimu-
lation regularity.

Network activity better follows scale‑free than regularly 
distributed stimuli
Figure 3a shows an example of an experiment conducted 
with protocol 1. Panels in Fig. 3a display the IFR and ISR 
traces (respectively, in gray and black) for the central 
500  s of recordings. Note that 30  s of recordings at the 
beginning and at the end of the stimulation sequence 
have been removed from representation and analysis to 
exclude border effects. In particular, the presented graphs 
are traces obtained after filtering the cumulative spike 
trains with a 8 s-long Gaussian window, as described in 
“Methods” (cf. “Data analysis—Correlation analysis”). 
Comparable results have been obtained for the second 
stimulation repetition (data not shown). As it can be eas-
ily observed from the represented traces, IFRs generally 
follow stimulation traces, with two major differences: 
regular stimulation (bottom panel) does not seem to be 
able to evoke similarly regular responses from the net-
work and it can be clearly seen how the evoked activity 
follows an erratic pattern; the other difference is the pres-
ence, in the IFR traces, of sharp, tall peaks. These sudden 
increases in the network-wide firing rate correspond to 
intense synchronized bursting events, typically occurring 
in mature cortical cultures as reported by many studies 
in the past [20, 22, 45, 47, 48]. Differently from the meth-
odological approach followed by Gal and Marom [15], 
we did not use any pharmacological cocktail to inhibit 
synaptic transmission in our cultures, thus spontaneous 
activity was still present when stimulating.

Population results for the nine experiments performed 
with this protocol are presented in Fig.  3b, c (cf. Addi-
tional file  2). Figure  3b reports the statistical distribu-
tions of PCs for each value of tested β as a function of the 
length of the filter used. The shortest filter window used, 
2  s, results in similar PC values regardless of β value. 
The 2  s-filter is the only one for which this occurs: this 
result is likely due to the fact that only a single stimulus, 
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Fig. 2  Analysis of evoked activity for the two designed protocols. a PSTH map of sample experiment during irregular (β = 1, black trace) and regular 
(β = ∞, gray trace) stimulation, delivered from channel 55, marked with an ‘X’ on the map. a1 and a2 show respectively the PSTH profiles observed 
during the first (STIM1) and second (STIM2) repetition of the same stimulation protocol. Scale bars for a1 and a2. X axis Time [0–400 ms]; Y axis Spike 
Count [0–2]. b Computation of the average number of evoked spikes during the two stimulation sessions of protocol 1. b1 and b2 show the mean 
number of evoked spikes computed for all the performed experiments, respectively, during first and second repetition, i.e. STIM1 and STIM2, with 
varying values of β used during the stimulation session (i.e. β = 0, β = 0.5, β = 1, β = 1.5, β = ∞). No statistical difference is observed among the 
five conditions (p > 0.05, One-way ANOVA, post hoc Bonferroni’s method). c Computation of the average number of evoked spikes during the two 
stimulation sessions of protocol 2. c1 and c2 show, respectively, the mean number of evoked spikes computed for all the performed experiments 
during first and second repetitions of protocol 2, with varying values of β (i.e. β = 1, black bars; β = ∞, light gray bars) and mean stimulation rates 
(MSR): fMBR/2 (0.07 ± 0.04, mean ± SD), fMBR (0.14 ± 0.08 Hz, mean ± SD), fMFR (0.54 ± 0.34 Hz, mean ± SD), respectively equal to half MBR, MBR and 
MFR obtained with an on-the-fly analysis of the first hour of the network’s spontaneous activity. A significant statistical difference was observed for 
β = ∞ between the number of evoked spikes obtained during regular stimulation at fMBR/2 and fMFR (*p < 0.05, One-way ANOVA, post hoc Bonfer-
roni’s method) for both repetitions. Data used to compute the statistical distributions reported in (b) and (c) are included in Additional file 2
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on average, lies within the filter width (the average inter 
stimulus interval is, in fact, exactly 2 s). This result intui-
tively matches the fact that average response amplitudes, 
as quantified by the total number of evoked spikes in a 
short window following each pulse (cf. Fig.  2), are not 
affected by stimulation regularity. If the filter length 
increases above the average inter-stimulus interval, 
the observed PC values start to change as a function of 
stimulation regularity and repetition: perfectly regular 
stimulation fails to evoke matching responses, resulting 
in the lowest scores of PC in almost all tested cultures. 

Too much irregularity (i.e. β = 0) causes a similar though 
weaker effect, with PC scores ranking second-lowest for 
filter lengths of 8 s and 16 s. The central tested values of β 
(0.5, 1 and 1.5) result in similar PC values.

Figure  3c presents the same data as the panels above 
regardless of filter length used (excluding T = 2 s): each 
box plot displays the distribution of PC scores obtained 
in the 9 performed experiments at T =  (4, 8, 16) s (i.e. 
each box plot represents a grand total of 27 points). We 
excluded T = 2 s for the considerations mentioned above 
(i.e. this filter length does not provide meaningful results 

Fig. 3  Input and output correlations under the five stimulation regimes during the first stimulation session of protocol 1. a Instantaneous firing rate 
(IFR, gray trace) and instantaneous stimulation rate (ISR, black trace) of a representative experiment under the five stimulation regimes during phase 
STIM1 of protocol 1. 500 s of activity are reported. Traces are normalized with mean = 0 and std = 1 for ease of comparison. Y-axis is in arbitrary 
units. Scale bar 100 s. b Box plots of Pearson’s coefficients (PCs) between ISR and IFR for all tested β values as a function of the filter length T (nine 
experiments, STIM1). c Box plots of PCs computed for each β value, regardless of the filter length used (i.e. each box plot represents 27 values − 9 
experiments × 3 filtering window lengths, T = (4, 8, 16) s). Asterisks denote populations whose median values are statistically different (*p < 0.05, 
Kruskal–Wallis test, post hoc Tukey’s method). d ‘Preferred’ β values for Protocol 1. The bar graph reports the number of stimulation series (nine 
cultures, two sessions per culture) resulting in the top PC score for each β value tested. Data used to compute the statistical distributions reported 
in (b), (c) and (d) are included in Additional file 2
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in this context). When considering all timescales alto-
gether, all β values result in higher correlations between 
input and output signals than regular sequences, and the 
difference is statistically significant. β = 0 leads to a mid-
dle-ground situation, with PC values not significantly 
different from any of the other β values (0.5, 1 and 1.5), 
but significantly different from the regular one. How-
ever, β values of 0.5, 1 and 1.5 tend to give higher PC val-
ues for longer timescales (T = (8, 16) s, see Fig. 3b) than 
β = 0.

The number of stimulation series (i.e. 2 for each of the 9 
tested cultures, after Gaussian 8-s pre-filtering) resulting 
in the highest PC scores, for each value of β, have been 
computed. We reported in Fig.  3d results coming from 
both STIM1 and STIM2, since we found that there is no 
significant difference between the two sessions regarding 
the performed analyses. As it is possible to observe, the 
most frequent value to result in the highest I/O correla-
tion is 1, but different cultures show different behaviors, 
with values of β ranging from 0 to 1.5 resulting in highest 
PC scores.

Stimulation rate has no influence if the stimulus 
distribution is scale‑free
We asked whether the average stimulation frequency 
(which in protocol 1 had been fixed to 0.5  Hz indepen-
dently of the spontaneous network dynamics) had an 
influence on the temporal distribution of responses, and 
in particular we wanted to test whether average stimula-
tion frequencies matching the endogenous rhythms of 
the network resulted in higher stimulus–response cor-
relations. Given that network activity is better entrained 
by scale-free distributed stimuli (i.e. β ∼

= 1) than by 
fully regular stimuli (i.e. β = ∞) (cf. Fig.  3), we decided 
to focus our attention on β =  1 and β = ∞, by varying 
the average stimulation frequency in a range comprised 
between  fMBR/2 (i.e. half of the spontaneous bursting 

frequency) and fMFR (i.e. mean spontaneous firing rate) 
(cf. “Methods: “Data analysis”—“‘On-the-fly’ analysis for 
protocol 2”). This gave us also the possibility to check 
whether the capability of the network to follow increasing 
stimulation frequencies is affected by the temporal distri-
bution of stimuli themselves. Hence we designed a second 
protocol (i.e. protocol 2), consisting in delivering stimula-
tion sequences with either β equal to 1 or ∞ and different 
average inter-pulse intervals.

Analysis of collected data indicates that there appears 
to be no relation between MFR/MSR ratio (or MBR/
MSR) and I/O correlation (data not shown): stimulation 
frequencies matching either spontaneous firing or spon-
taneous bursting rates seem to have no relevance on the 
evoked response pattern. On the other hand, absolute 
levels of MSRs proved to be more interesting: all stimu-
lation phases have been divided in two groups based on 
their MSR; the threshold between the two groups was 
arbitrarily set at 0.2 Hz. In particular, this value was cho-
sen as it is generally used as the maximum stimulation 
frequency for which independent responses can still be 
expected [41].

Figure  4 present quantitative population results for all 
the experiments performed with protocol 2 (cf. Addi-
tional file  2). The two panels of Fig.  4a present the 
PCs obtained for the two groups (MSR  <  0.2  Hz and 
MSR  >  0.2  Hz) for increasing values of the filter width 
and different values of β (i.e. 1 or ∞). Based on previ-
ous results reported in the literature for regular stimula-
tion [49, 50], we chose 0.2 Hz as a separation frequency 
in order to distinguish between two different condi-
tions: time-dependence (MSR > 0.2 Hz) or independence 
(MSR < 0.2 Hz) of responses to subsequent stimuli. It is 
possible to note how the network preference for irregu-
lar stimulation sequences described above holds true 
only for fast sequences (i.e. MSR  >  0.2  Hz). In the case 
of slower stimulations frequencies, observed PCs value 

Fig. 4  Input and output correlations for population during first stimulation session of protocol 2. a Panels show the mean (dots) and standard 
deviation (error bars) of the PCs computed with different filter lengths. First panel (a1) depicts results obtained on stimulation sequences with aver-
age repetitions slower than 0.2 Hz, second panel (a2) for those with stimulation frequency greater than 0.2 Hz. b Population statistics of all the PCs 
regardless of the filter length used for the stimulation sequences delivered. Asterisks denote populations whose mean values are statistically differ-
ent (*p < 0.05, Mann–Whitney test). Data used to compute the statistical distributions reported in panels (a) and (b) are included in Additional file 2
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are almost matching for all filter lengths considered, with 
regular stimulations providing slightly better (but not sig-
nificant) matches between inputs and outputs. For faster 
sequences, a significantly higher I/O correlation can be 
observed for irregular stimulation sequences, at least for 
filter lengths including more than a single stimulus on 
average (i.e. filters windows longer than 2 s). In Fig. 4b we 
reported the statistical distributions of PCs for all filter 
lengths: for lower stimulation frequencies, irregular stim-
ulation has largely the same effect of a regular one, while 
the opposite is true for higher stimulation frequencies. It 
is possible to notice how the only population resulting in 
a significant difference from the others is the one of PCs 
for fastest stimulation sequences in the case for β = ∞: 
as stimulation frequency increases, I/O correlation in the 
case of regular stimulation seems to degrade, whereas this 
does not happen for irregular stimulation.

Figure  5 provides evidence of neuronal networks pro-
gressively losing the capability to provide 1-to-1 responses 
to stimulation with increasing stimulation rates (thus 
resulting in a decreasing PC) (cf. Additional file  2), but 
only in the case of regular stimulation (cf. Fig. 5b). On the 
other hand, when stimulation intervals follow a 1/f dis-
tribution (cf. Fig.  5a), stimulation rate has essentially no 
influence on the observed responses of the network, with 
correlation values remaining almost constant throughout 
the analyzed interval (MSR  ~  0.01–1.3  Hz). In order to 

confirm this, a simple least-squares fitting has been per-
formed to find the best linear fit between the logarithm of 
MSR in each stimulation phase and the resulting PC (thin 
gray lines in Fig.  5). This fitting confirms that the linear 
dependency between MSR and PCs is negligible in the 
case of β = 1: R2 is 0.01 and the 95% confidence interval 
for the slope estimation includes 0. Conversely, for regular 
stimulation sequences, the MSR has a significant impact 
on the resulting I/O correlation (R2 = 0.66 and the upper 
bound of the 95% confidence interval for the slope param-
eter is negative). The graphs of Fig. 5 include the MSR/PC 
pairs obtained during STIM1 for the experiments con-
ducted with both protocol 1 (i.e. points at X =  0.5) and 
protocol 2.

Discussion
The first aim of this work was that of verifying whether 
dissociated neuronal cultures would present the same 
preference to irregularity in stimulation as isolated neu-
rons. For this point, a series of experiments was con-
ducted closely matching those performed by Gal and 
Marom [15] on single neurons. Our results present a 
good degree of similarity to those described in their 
work. In fact, neural cultures are mostly entrained by 
stimulation sequences characterized by the same range 
of β values as single neurons. This can be qualitatively 
observed on panel a of Fig. 3, with the IFR trace following 

Fig. 5  Relation between mean stimulation rate and I/O correlation. In the two scatter plots, each dot represents a 10-min stimulation phase. On 
the X axis, the average stimulation rate is presented, while the Y axis shows the PC obtained following a pre-filtering with an 8 s long window. At 
X = 0.5, the relevant PCs from the experiments performed with protocol 1 during STIM1 are represented, while the remaining points are relative 
to the PCs obtained during the first stimulation sessions of protocol 2. The gray fitting line is obtained as a linear interpolation using the natural 
logarithm of the MSR values as Xs and the PCs as Ys. The fitted slope is −0.031, with 95% confidence bounds at −0.083 and 0.02 (lower and upper, 
respectively) and a R2 value of 0.0054 for the graph in the left panel, relative to β = 1. The fit for the data represented in the graph reported in the 
right panel (β = ∞) results in a slope of −0.13 (95% confidence bounds are −0.16, −0.097) and a R2 of 0.66. Data reported in panels (a) and (b) are 
included in Additional file 2
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closely slow variations in the stimulation rate, while 
regular stimulation results in responses with no resem-
blance to the input sequence, and white noise stimulation 
(i.e. β =  0) altogether lacks slow fluctuations by design. 
This observation can be quantitatively appreciated in 
Fig.  3b, c, with slowly-changing stimulation sequences 
(i.e. those resulting from β values of 0.5, 1 and 1.5) result-
ing in significantly higher PCs than regular ones. White 
noise stimulation does not differentiate from scale-free-
like stimulation for shorter timescales (e.g. T  =  4  s), 
but provides lower stimulus–response correlations for 
longer timescales. Furthermore, the most likely (9 out of 
18 stimulation sessions) value of β resulting in the high-
est I/O correlation at T = 8 s is 1 (cf. Fig. 3d), as previ-
ously observed in Gal’s work for single neurons.

The second set of experiments also resulted in inter-
esting findings: I/O cross correlation decreased with 
an increase in stimulation rate for regular sequences, 
as expected, but it remained almost constant in the 
case of stimulation sequences with β value of 1. Previ-
ous literature (Gal et  al. [32]) reported how single neu-
rons switched from a 1-to-1 response mode to an erratic 
response pattern as stimulation rates increased above a 
certain threshold. Our results point out that something 
similar is true at the network level: well-separated stim-
uli result in the network equivalent of 1-to-1 responses 
and thus high I/O cross-correlation values, while stim-
uli closer together in time result in erratically skipped 
responses and little resemblance between input and 
output signals. This behavior breaks down dramatically 
when the stimulation sequence ceases to be regular and 
high PCs scores can be observed even at the highest 
stimulation frequencies considered for β values of 1 (cf. 
Fig. 5).

At the single cell level, different mechanisms might 
act as causes for the ‘preference’ of neurons for noisy 
inputs at short time scales. Likely candidates include 
properties of ion channels or time constants of intracel-
lular ion concentration recovery following spikes [51, 
52]. A reasonable, general explanation is that regular 
stimulation prevents slower processes from completely 
recovering, causing neuron behavior to be dictated by 
stochastic, fast processes. Under irregular stimulation, 
the occasional longer pauses allow for recuperation 
of slower processes [15]. Figure  5 shows that a similar 
explanation is plausible also for the behavior observed at 
the network level: regular stimulation allows the recov-
ery of all involved cellular and also synaptic processes 
if it is slow enough, while it cannot occur if the stimu-
lation rate increases too much and a mostly stochastic 
response pattern takes over. On the other hand, irregular 
stimulation, even at high MSRs, presents occasional long 
breaks (or at least lower frequency stimulation phases), 

allowing a more complete recovery to take place, so that 
the I/O correlation is largely independent from the aver-
age rate of stimulation.

In 2013, a paper published by the group of Egert [50] 
suggested that strength and duration of neural network 
responses to electrical stimulations followed an expo-
nential saturating profile as a function of the length 
of the preceding inactivity period. These results were 
compatible with short-term synaptic depression caused 
by bursts, due to depletion of readily releasable pool 
of neurotransmitter vesicles, also in conjunction with 
GABAergic inhibition (see Discussion of [50]). Also 
spike-frequency adaptation in single neurons during 
bursting activity could affect stimulus–response dynam-
ics [53]. These results (and their interpretation) are in 
agreement with what we found in our experiments: 
“noisy” (i.e. irregular-frequency) stimulation better 
entrains cortical networks’ activity because the sequence 
of time intervals between consecutive stimuli bet-
ter allows recovery of limited synaptic resources (with 
respect to fixed, and especially short, inter-stimulus 
intervals). Similar in vivo studies about state-dependent 
neuronal responsiveness confirmed what observed by 
Weihberger et al. [50] (see also [54, 55]), thus allowing to 
hypothesize that cortical network properties underlying 
this behavior are retained even in simpler in vitro model 
systems. Then, we expect that our results could be also 
reproduced in vivo, and relevant to the design of in vivo 
stimulation protocols leading to improved predictability 
and efficiency.

Conclusions and future perspectives
Our work suggests that regular stimulation sequences 
are almost ignored by neuronal networks, at least in the 
sense that the resulting activity bears very little resem-
blance to the input sequence. This is especially true if 
the stimulus rate approaches the Hertz range. What this 
observation suggests, in turn, is that particular care must 
be taken when designing stimulation patterns for neural 
systems (be it for research or clinical purposes), as fea-
tures that are usually overlooked, such as regularity are 
instead of paramount importance.

A couple of questions are left open. First, we would like 
to explore the range of stimulation parameters (i.e. ampli-
tude and duration of the stimulus) allowing to either 
amplify or reduce the correlation between the stimula-
tion and the response train or among spike trains during 
several repetitions of the stimulation. Secondly, it would 
be interesting to investigate the exact amount of ‘irregu-
larity’ needed in stimulation sequences in order for them 
to be effective. In this work we used input sequences 
with mean stimulation intervals of 2 s and a SD of 0.5 s. 
How small can the SD be, before the sequence becomes 
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indistinguishable from a regular one? Is the absolute 
value of noise standard deviation important or rather 
the ratio between average interval and standard devia-
tion? Finally, adding picrotoxin to our networks would 
certainly modify the stimulus–response dynamics (as 
already shown by [50]). Network disinhibition would 
likely increase the duration of both spontaneous and 
evoked network bursts (also facilitating their spatio-tem-
poral propagation), but at the same time would deepen 
synaptic depression, thus increasing the recovery time, 
as shown by Weihberger et  al. [50]. In this context it 
would be interesting to test our stimulation protocols 
in the presence of PTX, especially to assess the capabil-
ity of networks to follow higher stimulation frequen-
cies, even if irregularly distributed. Providing an answer 
to those questions with future experimental campaigns 
might result in a better understanding of the features that 
a signal requires to be correctly represented in a neural 
system.
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