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Interleukin‑1 receptor (IL‑1R) mediates 
epilepsy‑induced sleep disruption
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Abstract 

Background:  Sleep disruptions are common in epilepsy patients. Our previous study demonstrates that homeo‑
static factors and circadian rhythm may mediate epilepsy-induced sleep disturbances when epilepsy occurs at 
different zeitgeber hours. The proinflammatory cytokine, interleukin-1 (IL-1), is a somnogenic cytokine and may also 
be involved in epileptogenesis; however, few studies emphasize the effect of IL-1 in epilepsy-induced sleep disrup‑
tion. We herein hypothesized that IL-1 receptor type 1 (IL-1R1) mediates the pathogenesis of epilepsy and epilepsy-
induced sleep disturbances. We determined the role of IL-1R1 by using IL-1R1 knockout (IL-1R1 −/− KO) mice.

Results:  Our results elucidated the decrease of non-rapid eye movement (NREM) sleep during the light period in 
IL-1R −/− mice and confirmed the somnogenic role of IL-1R1. Rapid electrical amygdala kindling was performed to 
induce epilepsy at the particular zeitgeber time (ZT) point, ZT13. Our results demonstrated that seizure thresholds 
induced by kindling stimuli, such as the after-discharge threshold and successful kindling rates, were not altered in 
IL-1R −/− mice when compared to those obtained from the wildtype mice (IL-1R +/+ mice). This result suggests 
that IL-1R1 is not involved in kindling-induced epileptogenesis. During sleep, ZT13 kindling stimulation significantly 
enhanced NREM sleep during the subsequent 6 h (ZT13-18) in wildtype mice, and sleep returned to the baseline the 
following day. However, the kindling-induced sleep alteration was absent in the IL-1R −/− KO mice.

Conclusions:  These results indicate that the IL-1 signal mediates epilepsy-induced sleep disturbance, but dose not 
participate in kindling-induced epileptogenesis.
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Background
Epilepsy results from the imbalance of excitability and 
inhibition of neuronal networks [1, 2]. Patients with dif-
ferent types of epilepsy may experience either daytime 
sleepiness or nighttime sleep disturbance [3–6]. The 
prevalence of sleep disorders, such as excessive daytime 
sleepiness [7, 8], insomnia [9, 10] and obstructive sleep 
apnea [8, 10] is higher among patients with epilepsy.

Interleukin-1β (IL-1β), one of the somnogenic factors, 
enhances non-rapid eye movement (NREM) sleep by 

acting at the basal forebrain [11] and the ventrolateral 
preoptic area (VLPO) [12]. Two types of IL-1 receptors 
(IL-1Rs) have been identified: the type 1 receptor (IL-
1R1) and the type 2 receptor (IL-1R2). IL-1R1 domi-
nantly distributes throughout the brain and carries out 
the main function of NREM sleep enhancement [13]. 
IL-1R1 KO mice decrease sleep during the dark period 
of the light:dark cycle when compared with the wildtype 
mice [13]. IL-1 is also identified as one of the proin-
flammatory cytokines, which leads to the pathogenesis 
of epilepsy during inflammation. The concentrations 
of IL-1β increase and the number of IL-1 receptors are 
up-regulated during seizures [14, 15]. Existing evidence 
indicates that the increased concentrations of IL-1β may 
affect the seizure threshold, but the role of IL-1β in the 
epileptogenesis is still controversial, as both a proconvul-
sant and an anticonvulsant have been suggested. Grow-
ing evidence supports IL-1 as a proconvulsant substance. 
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Seizure activities are inhibited after the injection of the 
IL-1 receptor antagonist (IL-1ra) and seizures are also 
suppressed in mice with over-expressed IL-1ra [14, 16]. 
On the other hand, the anticonvulsant effects of IL-1 are 
also suggested in other studies. IL-1 augments the effect 
of gamma-aminobutyric acid (GABA)-A receptors and 
increases the pentylenetetrazol (PTZ)-induced seizure 
threshold in mice [17]. Intracerebroventricular (ICV) 
injections of IL-1β suppress the amygdaloid kindling-
induced seizures in rats [18]. Furthermore, IL-1 exhibits a 
temporal and dose-dependent influence on sleep regula-
tion. Low doses of IL-1 increase NREM sleep during the 
night and slow wave activity during the day; in contrast, 
high doses of IL-1 suppress NREM sleep during the day 
and slow wave activity at night [19]. The opposite actions 
of high- and low-doses of IL-1 may explain the divergent 
effects. Because of the conflicts between those observa-
tions, the role of IL-1 in epileptogenesis needs to be fur-
ther determined. We herein hypothesized that IL-1R1 
mediates the pathogenesis of epilepsy and the epilepsy-
induced sleep disturbances. In this study, we examined 
IL-1R1 in the kindling-induced epileptogenesis and sleep 
disruptions by employing IL-1R1 −/− mice.

Our previous results have demonstrated that epi-
lepsy occurring at different zeitgeber time (ZT) points 
alters sleep differently [20, 21]. Kindled epilepsy at ZT0 
decreases NREM sleep during the light period; in con-
trast, kindling stimulation at ZT13 increases NREM 
sleep during the dark period [20]. At ZT0, corticotropin-
releasing hormone (CRH) mediates kindling-induced 
NREM sleep reduction, and at ZT13, the increases in 
IL-1 are attributed to kindling-induced NREM sleep 
enhancement [20]. Furthermore, we further found that 
at ZT6, kindling epilepsy shifts the fluctuation of period 
circadian protein homolog 1 protein (PER1) in the supra-
chiasmatic nucleus (SCN) of the hypothalamus and alters 
sleep circadian rhythm [20]. These results suggest that 
epilepsy may alter either homeostatic factors or circadian 
rhythms to cause sleep disturbances. In this study, we 
further determined our hypothesis that at ZT13, IL-1R1 
mediates kindling-induced sleep disruption by using 
IL-1R1 +/+ and IL-1R1 −/− mice.

Methods
Animals
Male C57BL/6 (IL-1R1 +/+ and IL-1R1 −/−) mice (4- 
to 6-weeks old) were used in present study. The original 
IL-1R1 −/− KO mice were obtained from Jackson Labo-
ratory (strain: B6.129S7-I/1r1tm1Imx/J) and bred in house. 
The wildtype C57BL/6 mice (IL-1R1 +/+) were purchased 
from BioLASCO Taiwan Co., Ltd. The polymerase chain 
reaction (PCR) analysis of brain tissue was performed 
to confirm the genotype of IL-1R1 KO mice used in 

experiments and to confirm any genetic drift during breed-
ing (the detail genotyping methods as described later). All 
experiments and animal care were performed following 
the principles outlined in the Institutional Animal Care 
and Use Committee (IACUC) of National Taiwan Univer-
sity. Mice were anesthetized with zoletil (20  mg/kg, i.p.) 
and xylazine (12 mg/kg, i.p.), treated with antibiotics (pen-
icillin G benzathine) to prevent infection, and surgically 
implanted with two electroencephalographic (EEG) elec-
trodes (wire-wrapping-wire 30 AWG) and a bipolar stimu-
lating electrode. The placements of EEG electrodes were 
at the left frontal lobe and right parietal lobe. The bare 
ends of the insulated leads from the EEG electrodes were 
connected to Dupont female terminals and a 2.54 mm 2P 
Dupont connector. Bipolar insulated electrodes (model 
# M148340, California fine wire company, Grover beach, 
CA) were placed in the left basolateral nucleus of the 
amygdala (BLA) as the target of kindling stimuli. The coor-
dinates of the BLA were 1.9 mm caudal to bregma, 2.8 mm 
lateral to bregma, and 4.6 mm ventral to the dura [22]. The 
Dupont connector and bipolar electrodes were cemented 
to the skull with dental acrylic (Tempron, GC Co., Tokyo, 
Japan). Ibuprofen was added to their drinking water for 
5 days after the surgery to reduce pain. Five days after the 
EEG implantation, the Dupont connector was connected 
to the amplifier system for habituation. All animals were 
housed separately in a recording cage and were housed in 
a 12:12 h light:dark (L:D) cycle in an isolated room where 
the temperature was maintained at 23 ±  1  °C. Food and 
water were provided ad libitum.

PCR genotyping
For the PCR genotyping analysis in each mouse, 0.5 cm 
sections of the tail tips were dissolved in 0.2 ml of Direct-
PCR Lysis Reagent (Viagen Biotech) and 0.5  mg/ml of 
proteinase K (Roche) solutions under the following con-
ditions: 55 °C for 6–7 h, 85 °C for 45 min, 25 °C for 5 min 
(1 cycle), and then precipitated by centrifuging for 10 s. 
One μl of lysate was used for 50  μl PCR reactions with 
MyTaq HS Mix (Bioline, Taunton, MA). We used the 
primers recommended by Jackson Laboratory for geno-
typing (Table 1). The expected PCR band for IL1R1 +/+ 
is 310 bps and the band for IL-1R1 −/− is 150 bps. The 
heterozygous (IL-1R+/−) mice revealed both bands of 
310 and 150 bps. PCR was performed by a C1000 ther-
mocycler (BioRad, Hercules, CA). The parameters for 
reaction temperature cycles were 94  °C for 2  min, and 
then 10 cycles of 94  °C for 20 s, 65  °C for 15 s (−0.5  °C 
decreases per cycle), and 68  °C for 10  s, followed by 
28 cycles of 94 °C for 15 s, 60 °C for 10 s, and 72 °C for 
10  s. We analyzed 5  μl of PCR reactions by using 1.5% 
agarose gel electrophoresis (agarose powders and 0.5× 
TBE buffer were purchased from Ameresco, Solon). All 
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samples and DNA markers (100  bp DNA ladder, Gen-
eDirex) were mixed with 6× loading buffers (GeneDirex 
novel juice) and slowly loaded into the slots of submerged 
gel in the electrophoresis chamber (Mupid-II; Cosmo 
Bio Co., Tokyo). The gels were run at 100 V for 20 min. 
We examined the gel by UV illumination and photo-
graphed the gel as shown in Fig. 1. The primers are listed 
in Table 1. Mice used in this experiment were genotyped 
to confirm no genetic drift (Fig. 1).

Kindling manipulation
Nine days after surgery, mice were treated with rapid 
electrical amygdala kindling (REAK) [23, 24] to develop 
epilepsy. A 2-channel general-purpose stimulus gen-
erator (#STG 4002, Multi Channel System MCS GmbH, 
Reutlingen, Germany) was used to deliver the kin-
dling stimuli. The after-discharge threshold (ADT) was 
determined for each mouse by giving a series of stimu-
lus intensities, which started from 20  μA and increased 
by 20  μA every 2  min until epileptiform after-discharge 
(AD) spikes appeared on EEGs within 10  s after the 
stimulation. AD spikes are defined as spikes of over 2 Hz 
and at least three times higher than the baseline EEG 
amplitude. Mice, not manifesting any AD spikes with 
a stimulus intensity of 250  μA were excluded from the 
experiment. The intensity of kindling stimuli depended 
on individual ADT intensity of each mouse. A total of 
40 stimuli were given through the bipolar electrode into 
the BLA. The stimulus was a train of monophasic pulses 
(1-ms duration each) of 100 Hz for 3 s, and the stimula-
tion was given every 5 min over a total of 200 min. The 
severity of seizures was scored according to the 7 grade 
modifications of Racine’s classification: stage 1, facial clo-
nus; stage 2, head nodding; stage 3, unilateral forelimb 

clonus; stage 4, rearing with bilateral forelimb clonus; 
stage 5, rearing and falling (loss of postural control); stage 
6, running or bouncing seizures; stage 7, tonic hind limb 
extension [25, 26]. Mice that exhibited epileptiform EEGs 
induced by a single stimulus with the intensity of 300 μA 
at ZT13 after the REAK protocol were considered as a 
successful induction of epilepsy by kindling.

Experimental protocols
Two groups of mice were used in this study. Group 1 
(n  =  13) was used to determine the normal sleep and 
sleep alteration induced by kindling in wildtype (IL-1R1 
+/+) mice at ZT13 and group 2 (n =  18) was used to 
determine the kindling-induced sleep disturbance in the 
IL-1R1 −/− mice at ZT13. All recordings started at the 
beginning of the dark period (ZT13) and continued for 
24 h (ZT13-ZT24 and ZT1-ZT12). A 24-h baseline EEG 
was acquired as the control before the REAK protocol, 
and no electrical impulses were given at any time before 
and throughout the baseline recording. Then, 40 stimuli 
of REAK were given through the bipolar electrode into 
the left basolateral amygdala (BLA). Mice in all groups 
received a ZT13-kindling stimulus on the next day (the 
day of seizure induction) after the REAK procedure. Until 
epileptiform spikes induced by the ZT13-kindling mani-
fested on EEGs, the mice were continuously recorded for 
2 days (1st- and 2nd-day after seizure induction) to eval-
uate their sleep alteration.

Statistical analysis for sleep recordings
All values of sleep recordings are presented as 
mean  ±  standard error of the mean (SEM). Repeated 
measures analysis of variance (ANOVA) was performed 
to analyze the differences in the vigilance states and 
sleep-architecture parameters across the dark period, 
light period and specific time blocks. If statistically signif-
icant differences were detected, post hoc (Duncan’s) mul-
tiple range tests were used. An α level of p value <0.05 
was taken as indicating a statistically significant differ-
ence between groups.

Statistical analysis for seizure threshold
All ADT intensities are presented as mean ± SEM. Two-
way ANOVA was performed to evaluate the differences 
of ADT intensities between groups, and between suc-
cessful-kindled and failure-kindled mice. The successful 
rate of kindling is presented as the percentage. Fisher’s 
exact test was performed to compare the successful kin-
dling rates between groups. Mann–Whitney U test was 
used to examine the differences of Racine’s stage seizures 
in successful-kindled mice. The p value <0.05 was taken 
as indicating a statistically significant difference between 
groups.

Table 1  The primer list

Primer Sequence 5′ to 3′ Primer type

10774 CTCGTGCTTTACGGTATCGC Mutant forward

20665 GGTGCAACTTCATAGAGAGATGA Wildtype forward

20666 TTCTGTGCATGCTGGAAAAC Common

Fig. 1  IL-1R1 expression of the cerebral hemispheres from IL-1R 
+/+ and −/− mice. −/− represents IL-1R1 −/− mice; +/+ refers to 
wildtype mice. N indicates the negative control
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Results
The role of IL‑1R1 in kindling‑induced epileptogenesis
The ADT intensities, successful rates of kindling and 
Racine’s stages of seizure were used to determine the 
changes in seizure thresholds. Table  1 delineated the 
results of ADT intensities and the successful rates of kin-
dling. Some mice failed to develop epilepsy, even though 
they exhibited an AD spike. The ADT intensities between 
successful-kindled mice and failure-kindled mice were 
not significantly altered in two groups (p =  0.52). The 
average ADT intensity for success-kindled IL-R1 +/+ 
mice was 52.7 ± 10.2 μA (n = 11), and was 50 ± 10.0 μA 
(n =  2) for failure-kindled IL-1R1 +/+ mice. In IL-1R1 
−/− mice, the average ADT intensity of success-kindled 
mice was 69.2 ± 14.8 μA (n = 13) and that of failure-kin-
dled mice was 100 ± 29.7 μA (n = 5). The ADT intensi-
ties between IL-1R1 +/+ and IL-1R1 −/− mice were not 
significantly different (Table 2).

The successful rates of developing epilepsy by kindling 
stimuli in the IL-1R1 +/+ and IL-1R1 −/− were 84.6 (11 
out of 13) and 72.2% (13 out of 18), respectively. The suc-
cessful rates of developing epilepsy in two groups of mice 
were unremarkable (p = 0.73).

The seizures were scored by Racine’s stage scores. No 
statistically significant difference among the median 
scores of Racine’s stage between IL-1R1 +/+ and IL-1R1 
−/− mice was discovered. The median scores of Racine’s 
stage in two groups were the same, which were rated as 
grade 2 (n =  11 for wildtype, n =  13 for IL-1R1 −/−; 
p = 0.6829).

Sleep difference between IL‑1R1 +/+ and −/− mice
During the undisturbed condition, IL-1R1 −/− mice 
exhibited significantly lower NREM sleep during the light 
period when compared to IL-1R1 +/+ mice. REM sleep 
was also significantly lower in the IL-1R1 −/− mice dur-
ing the light period when compared to IL-1R1 +/+ mice. 
There was no difference in both NREM and REM sleep 
during the dark period when comparing between IL-1R1 
+/+ and IL-1R1 −/− mice. The time spent in NREM 
sleep during the 12-h light period was 50.5  ±  1.7% in 
IL-1R1 +/+ mice and 34.8 ± 1.5% in IL-1R1 −/− mice 

(p  <  0.05 vs. IL-1R1 +/+; Fig.  2a). The time spent in 
REM sleep during the 12-h light period was 8.9 ± 0.6% 
in IL-1R1 +/+ mice and 4.2 ± 0.4% in IL-1R1 −/− mice 
(p < 0.05 vs. IL-1R1 +/+; Fig. 2b).

ZT13 kindling‑induced sleep alterations in IL‑1R1 +/+ mice
ZT13 kindling stimulation significantly enhanced NREM 
sleep during ZT13-18 on the 1st-day after seizure induc-
tion in IL-1R1 +/+ mice (Fig. 3a). The amount of NREM 
sleep during ZT13-18 was increased from 11.7  ±  2.3 
(obtained before receiving the ZT13 kindling stimulation, 

Table 2  Results of seizure threshold in two groups of mice

Values of ADT are mean ± SEM. ADT differences were detected by two-way ANOVA

Values of rates are presented as percentage. Fisher’s exact test was performed to compare the difference between two groups of mice

ADT after-discharge threshold

Group Success kindled Success kindling rate,  % Failure kindled Failure kindling rate,  % Total (n)

(n) ADT, μA (n) ADT, μA

Wildtype 11 52.7 ± 10.2 84.6 2 50.0 ± 10.0 15.4 13

IL-1R1 −/− 13 69.2 ± 14.8 72.7 5 100.0 ± 29.7 27.3 18

Fig. 2  Sleep difference between IL-1R1 +/+ and IL-1R1 −/− mice. 
a Represents the data of NREM sleep and b indicates the values of 
REM sleep. Closed circles represent the data obtained from the IL-1R1 
+/+ mice, and open circles represent the data obtained from the 
IL-1R1 −/− mice. Asterisk refers to a statistically significant difference 
between two groups. The black bar indicates the 12-h dark period 
and the white bar indicates the 12-h light period
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the baseline control) to 20.1 ± 2.6% (n = 8) on the 1st-
day after seizure induction (p < 0.05 vs. baseline control), 
and returned to 13.5 ± 2.4% on the 2nd-day after seizure 
induction (p  >  0.05 vs. baseline control; Fig.  3a, c). The 
difference of NREM sleep acquired before and after kin-
dling stimulation is 8.6 ±  2.5%. ZT13 kindling stimula-
tion did not alter REM sleep during both dark and light 
periods on the 1st- and 2nd-day after seizure induction 
(Fig. 3b).

ZT13 kindling‑induced sleep alterations in IL‑1R1 −/− mice
In IL-1R1 −/− mice, ZT13 kindling stimulation did not 
have significant impact on NREM sleep during ZT13-18 
(Fig.  4a). The time spent in NREM sleep during ZT13-
18 was 12.7 ±  2.9% before receiving the ZT13 kindling 
stimulation (the baseline control), 15.5 ± 3.9% (p > 0.05 
vs. baseline control) from the 1st-day after seizure induc-
tion, and 11.7 ± 3.4% (p > 0.05 vs. baseline control) from 

the 2nd-day after seizure induction (Fig. 4a, c). The dif-
ference between NREM sleep acquired before and after 
kindling stimulation is 2.5 ± 2.6% (p < 0.05 vs. the differ-
ence obtained from IL-1R1 +/+ mice). Effects of ZT13 
kindling stimulation on REM sleep and wakefulness did 
not reach statistical significance during any of the time 
blocks (Fig.  4b). The percentages of REM sleep during 
ZT13-18 obtained from the baseline, the 1st-day, and the 
2nd-day after seizure induction were 1.2 ± 0.4, 2.6 ± 0.6 
(p > 0.05 vs. baseline control), and 3.0 ± 0.9% (p > 0.05 vs. 
baseline control), respectively.

Discussion
Many epileptic patients suffer from sleep disturbances, 
which enormously reduce their quality of life [8, 9, 27]. 
Although the comorbidity of epilepsy and sleep disor-
ders is generally evidenced, the underlying mechanisms 
have yet to be clarified. This study investigated the roles 

Fig. 3  The effects of ZT13 kindling stimuli on sleep alterations in wildtype mice. a ZT13 kindling stimuli enhanced NREM sleep during ZT13-18 in 
the 1st-day after seizure induction, but there was no change on the following day. b ZT13 kindling stimulation did not alter REM sleep. Shadow 
areas represents the data obtained from baseline control, closed circles represent the data acquired from the 1st-day after seizure induction, and 
the open circles represents the 2nd-day after seizure induction. c The summary of NREM sleep alteration after ZT13 kindling stimuli. The grey bar 
represents the data obtained from control, the black bar represents the data acquired from the 1st-day after seizure induction, and the white bar 
represents the data obtained from the 2nd-day after seizure induction. Asterisk refers to a statistically significant difference between control and the 
1st-day after seizure induction. Sleep-wake activity was recorded from the beginning of the dark period (ZT13) and lasted for 24 h
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of IL-1R1 in the thresholds of kindling-induced epilep-
togenesis and in the kindling-induced sleep disturbances. 
An IL-1R1 KO mouse was the ideal model to explore the 
role of IL-1; the difference in parameters can be exam-
ined when there is a lack of IL-1 signaling.

The theory assumed to interpret the discrepant role of 
IL-1 in epileptogenesis derives from the variability of IL-1 
concentrations and the complexity of IL-1 downstream 
cytokines. Therefore, the transgenic IL-1R1 KO mouse 
is an excellent model to examine the significance of IL-1 
when its signal in the brain is completely eliminated. 
Much evidence also supports the proconvulsant role of 
IL-1 in epilepsy. In rat models, systemic administration 
of IL-1ra reduces seizures induced by hippocampal kin-
dling or pilocarpine [14]. In transgenic mice, bicuculline 
methiodine-induced seizure decreases in IL-1ra over-
expressed mice, and the seizure threshold in heating-
induced febrile seizure is increased in IL-1R1 −/− mice 
[16, 28]. IL-1 may enhance seizures by facilitating LTP in 
the hippocampus; however, it is also suggested that as the 
dosage is increased, IL-1 performs the opposite role and 
suppresses LTP [29, 30]. A recently published paper fur-
ther describes that the pathogenesis and maintenance of 

temporal lobe epilepsies are attributed to the activation 
of P2X7 receptors by the release of ATP during neurode-
generation, which activates the microglia to release IL-1β 
[31]. In contrast, the anticonvulsant role of IL-1β has 
also been suggested in BLA-kindling rats, as evidenced 
by the decrease in seizures after ICV injection of IL-1β 
[18]. Our current results indicate no change in the sei-
zure thresholds in kindling epileptogenesis in mice with 
a lack of IL-1R1. These results suggest that IL-1R1 is not 
a critical factor in influencing kindling-induced epilep-
togenesis. However, our other study demonstrated that 
IL-1R1 contributes to the epileptogenesis when epilepsy 
is induced by pentylenetetrazol (PTZ) (personal unpub-
lished result).

IL-1β is one of the potent somnogenic factors. It’s 
been reported that NREM sleep during the dark period 
is reduced in IL-1R1 KO mice when comparied to the 
wildtype mice [13]. In our results, we found that both 
NREM and REM sleep were reduced during the light 
period, rather than during the dark period. IL-1β exhib-
its circadian fluctuation with higher concentrations dur-
ing the light period and with lower concentrations during 
the dark period [32]. A lack of IL-1 signaling should affect 

Fig. 4  The effects of ZT13 kindling stimuli on sleep alterations in IL-1R1 −/− mice. a ZT13 kindling stimuli did not change NREM sleep during ZT13-
18 in the 1st- and 2nd-day after successful kindling. b ZT13 kindling stimulation did not alter REM sleep either. Shadow areas represents the data 
obtained from baseline control, closed circles represent the data acquired from the 1st-day after seizure induction, and the open circles represents 
the 2nd-day after seizure induction. c The summary of NREM sleep alteration after ZT13 kindling stimuli. The grey bar represents the data obtained 
from control, the black bar represents the data acquired from the 1st-day after seizure induction, and the white bar represents the data obtained 
from the 2nd-day after seizure induction. Sleep-wake activity was recorded from the beginning of the dark period (ZT13) and lasted for 24 h
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sleep during the light period, and our results provided 
the evidence to support the somnogenesis of IL-1 sign-
aling. The increase of NREM sleep after ZT13 kindling 
stimulus in the wildtype mice, but not in the IL-1R1 KO 
mice revealing the importance of IL-1 receptors in epi-
lepsy-induced sleep alterations. During the first 6 h fol-
lowing ZT13 kindling stimulus (ZT13-18), NREM sleep 
obtained from the wildtype mice increased. These altera-
tions returned to the baseline value on the 2nd day. In 
transgenic knockout mice, kindling stimulation did not 
alter NREM sleep during first 6 h.

During neuronal damage, the expression of IL-1β and 
its receptors are increased, and IL-1β signaling pathways 
are activated when encountering pathological damage 
[15, 33]. The activation of IL-1β function may facilitate 
neuronal excitability by modulating long-term potentia-
tion (LTP) and inhibitory GABA receptors in hippocam-
pal areas [17, 30]. Besides affecting synaptic plasticity, the 
increase of IL-1β influences both NREM sleep and REM 
sleep. Administration of IL-1β into the CNS, or periph-
eral circulated system, significantly enhances NREM 
sleep [34]. But when the dose of IL-1β reaches a patho-
genic concentration, the opposite result occurs in which 
both NREM sleep and REM sleep are suppressed [35, 36]. 
The common phenomenon that NREM sleep increases 
and REM sleep is suppressed during inflammation in 
individual is in accordance with the results of IL-1β 
administration [37]. This conjecture explains the close 
link between sleep and the immune system, and it helps 
interpret our results that NREM sleep increased after 
ZT13 kindling in wildtype mice, but not IL-1R1 KO mice.

The increases of sleep after seizures have also been 
reported in pilocarpine-induced epileptic rats. Admin-
istration of pilocarpine enhances and fragments slow 
wave sleep in the following night and morning, and 
returns to normal after 24 h [38]. Quigg et al. [39] dem-
onstrated that deep NREM sleep increases following one 
kindling stimulus, and lasts even longer after 5 times of 
accumulated kindling stimuli. In our previous study, the 
seizure occurrence time is considered as a critical factor 
in determining the ways to alter sleep; kindling stimula-
tion at ZT0 decreases NREM sleep, whereas ZT13 kin-
dling stimulation enhances NREM sleep [18, 20]. IL-1 
mRNA expression increases in the hippocampus and 
cortex after ZT13 kindling stimulus and the increase 
of NREM sleep is blocked by administration of IL-1ra 
[20, 21]. Nevertheless, our current study demonstrated 
that a lack of IL-1 signals in the IL-1R1 −/− mice failed 
to express the ZT13-induced sleep enhancement. Fur-
thermore, different IL-1 signals may lead to different 
outcomes between epilepsy and sleep. For example, IL-1 
activates both p38 mitogen-activated protein kinase 

(MAPK) and nuclear factor κB (NF-κB) pathways in 
astrocytes, but only regulates p38 MAPK pathways in 
the hippocampal neurons [40]. Particularly, a lower dose 
of IL-1 phosphorylates Src kinase in the hippocampal 
neurons [40]. Furthermore, different isoforms of the 
IL-1 receptor accessory proteins also mediate different 
signal pathways [40]; however, the mechanisms need to 
be further determined. Astrocytes and neurons contrib-
ute to both epileptogenesis and sleep regulation. Differ-
ent IL-1 signaling outcomes could explain why IL-1R1 
plays a role in sleep alteration, but not in epileptogen-
esis in kindled mice.

Conclusions
In summary, our results demonstrated the essential role 
of IL-1R1 in kindling-induced sleep disturbance by using 
transgenic IL-1R1 KO mice. Epilepsy-induced sleep dis-
turbances were absent in the IL-1R1 KO mice, indicat-
ing the importance of IL-1 signals. The knockout of 
IL-1R1 did not change the seizure thresholds, suggesting 
that IL-1R1 signaling is not in involved in the kindling-
induced epileptogenesis.
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