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Abstract 

Background:  Reinforcement learning is a fundamental form of learning that may be formalized using the Bellman 
equation. Accordingly an agent determines the state value as the sum of immediate reward and of the discounted 
value of future states. Thus the value of state is determined by agent related attributes (action set, policy, discount 
factor) and the agent’s knowledge of the environment embodied by the reward function and hidden environmental 
factors given by the transition probability. The central objective of reinforcement learning is to solve these two func-
tions outside the agent’s control either using, or not using a model.

Results:  In the present paper, using the proactive model of reinforcement learning we offer insight on how the brain 
creates simplified representations of the environment, and how these representations are organized to support the 
identification of relevant stimuli and action. Furthermore, we identify neurobiological correlates of our model by sug-
gesting that the reward and policy functions, attributes of the Bellman equitation, are built by the orbitofrontal cortex 
(OFC) and the anterior cingulate cortex (ACC), respectively.

Conclusions:  Based on this we propose that the OFC assesses cue-context congruence to activate the most context 
frame. Furthermore given the bidirectional neuroanatomical link between the OFC and model-free structures, we 
suggest that model-based input is incorporated into the reward prediction error (RPE) signal, and conversely RPE 
signal may be used to update the reward-related information of context frames and the policy underlying action 
selection in the OFC and ACC, respectively. Furthermore clinical implications for cognitive behavioral interventions are 
discussed.

Keywords:  Model-based reinforcement learning, Proactive brain, Bellman equation, Reward function, Policy function, 
Cue-context congruence
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Background
Reinforcement learning is a fundamental form of learn-
ing where learning is governed by the rewarding value of 
a stimulus or action [1, 2]. Concepts of machine learn-
ing formally describe reinforcement learning of an agent 
using the Bellman equation [3], where the value of a given 
state (reached following a specific action) is:

with Vπ(s): value of state “s”; aϵA(s): action set available 
to the agent in state “s”; π(s, a): policy denoting the set of 
rules governing action selection; T(s, a, s′): state transi-
tion (from s to s′) probability matrix; R(s, a, s′): reward 
function; γ: discount factor; Vπ(s′): value of state follow-
ing state “s” (i.e. value of state “s′”).

The Bellman equation is a central theorem in reinforce-
ment learning, it defines the value of a given state as the 
sum of the immediate reward received upon entering a 
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state and the discounted value of future states that may 
be obtained starting from the current state. The value 
of state is determined by agent related attributes (action 
set, policy and γ discount factor), the agent’s knowledge 
of the environment (described by the reward function) 
and environmental factors hidden to agent (given by 
the transition probability). Accordingly, while the set of 
actions and policy are inherent to the agent, the reward 
function and the transition probabilities are character-
istics of the environment, by definition they are beyond 
the agent’s control. Thus, the need to obtain informa-
tion about these two functions stands in the focus of 
reinforcement learning problems (for a more elaborate 
overview, see: [4]). This may be done by either build-
ing a world model that compiles the reward function 
and the transition probabilities or omitting the use of a 
model. In the latter case, the agent obtains information 
about its environment by trial and error and computes 
estimates of the value of states or state-action pairs, in a 
way that estimates are cached [3, 5]. These two distinct 
approaches to solve reinforcement learning problems are 
embodied by the concepts of model-based and model-
free reinforcement learning, respectively. This distinction 
carries several implications about learning and updating 
the value of state as well as concerning the ability to carry 
out predictions, forward-looking simulations and optimi-
zation of behavior. Model-free learning, by omitting the 
use of a model, provides an estimate of the value function 
and/or the policy by use of cached state or state-action 
values that are updated upon subsequent learning. Con-
versely, predictions also concern the estimated values [4]. 
Model-based learning, however is characterized by use of 
a world model [6], therefore direct experience is used to 
obtain the reward function and the transition probabili-
ties of the Bellman equation. Herein, learning is used to 
update the model (as opposed to model-free learning, 
where learning serves to update the cached estimated 
value of state). Generally, model-based reinforcement 
learning problems use the model to conduct forward-
looking simulations for the sake of making predictions 
and/or optimizing policy in a way that the cumulated 
sum of the reward is maximized in the long term. Never-
theless, under the assumption that the Bellman equation 
is appropriate to describe model-based reinforcement 
learning, the recursive definition of the state value (e.g. a 
value of a state incorporates the discounted value of the 
successive state, as well as the successive state to that, so 
forth) should be acknowledged. This implies that under 
model-based reinforcement learning scenarios, predic-
tions (e.g. attempts to determine the value of state) are 
deduced from information contained in the model. Thus 
a relevant issue for model-based reinforcement learn-
ing, concerns the world model underlying predictions, 

is updated. Former reports have implicated cognitive 
efforts [7] or supervised learning as possible mechanisms 
for updates, nonetheless further insight is needed.

The neurobiological substrate of model-free reinforce-
ment learning is well rooted in the reward prediction 
error hypothesis of dopamine, i.e., upon encountering 
unexpected rewards or cues for unexpected rewards, ven-
tral tegmental area (VTA) dopaminergic neurons burst 
fire. This leads to phasic dopamine release into the syn-
aptic cleft that, by altering synaptic plasticity, may serve 
as a teaching signal underlying model-free reward learn-
ing [8, 9]. This phasic dopamine release is considered to 
be the manifestation of a reward prediction error signal 
computed as the difference between the expected and 
actual value of the reward received, and it drives model-
free reinforcement learning [2, 8]. While the model-free 
learning accounts are well characterized, the notions 
relating to how the brain handles model-based reinforce-
ment learning are vague. In addition to the question of 
updating the world model posited before, resolution of 
other critical unresolved issues await including: how an 
agent determines the relevant states and actions given 
the noisy sensory environment, how are the relevant fea-
tures of states determined by the agent, how can an agent 
effectively construct a simplified representation of the 
environment in a way that the complexity of state-space 
encoding is reduced [10]?

In the current paper, building on the theory of the ‘pro-
active brain’ [11, 12] and a related proactive framework 
that integrates model-free and model-based reinforce-
ment learning [4], we expand the neurobiological founda-
tions of model-based reinforcement learning. Previously, 
using the distinction for model-based and model-free 
learning and taking the structural and functional con-
nectivity of neurobiological structures into consideration, 
we offered an overview of model-free and model-based 
structures [4]. According to our proactive account, the 
ventral striatum serves as a hub that anatomically con-
nects model-free (pedunculo-pontine-tegmental nucleus 
(PPTgN) and VTA) and model-based [amygdala, hip-
pocampus and orbitofrontal cortex (OFC)] structures, 
and integrates model-free and model-based inputs about 
rewards in a way that value is computed (the distinction 
between reward and value must be noted at this point 
[4]). Additionally, based on the neuroanatomical connec-
tions between model-based and model-free structures 
and experimental findings of others, we have also sug-
gested that these systems are complementary in function 
and most likely interact with each other [4, 10, 13–15]. 
Based on the structural connectivity of the ventral stria-
tum and other, model-based structures (hippocampus, 
medial OFC (mOFC), amygdala) [16], as well as their 
overlap with the default mode network [17, 18], we 
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further suggested that the model used for model-based 
reinforcement learning is built by the default mode net-
work [4].

In the present concept paper, the proactive brain con-
cept is further described to show how the brain creates 
simplified representations of the environment that can 
be used for model-based reinforcement learning, and 
how these representations are organized to support the 
identification of relevant stimuli and action. Moreover 
we further expand our integrative proactive framework 
of reinforcement learning by linking model-based struc-
tures [the OFC, the anterior cingulate cortex (ACC)] to 
the reward and the policy function of the Bellman equa-
tion, respectively, providing a novel mathematical for-
malism that may be utilized to gain further insight to 
model-based reinforcement learning. Accordingly based 
on our proactive framework and works of others, we 
propose that OFC computes the reward function attrib-
ute of the Bellman equation, a function, that integrates 
state-reward contingencies and state-action-state’ trans-
actions (e.g. how executing an action determines tran-
sitioning from one state to the other one). Furthermore, 
using the proactive brain concept we suggest that the 
mOFC formulates reward expectations based on cue-
context congruence by integrating cue (amygdala) and 
context (hippocampus) related input while the lateral 
OFC (lOFC) contributes to action selection by solving 
the credit assignment problem. Moreover we propose 
that ACC a key structure for action selection, computes 
the policy function of the Bellman equation by capturing 
reward history associated with previous action. Addi-
tionally, using fundamental concepts of the proactive 
framework, we offer testable hypotheses based on the 
interaction between model-based and model-free sys-
tems. On one hand, we propose that the function of VTA 
dopaminergic neurons may be altered by manipulating 
OFC glutaminergic input. On the other, we propose that 
the model used by model-based reinforcement learning is 
updated by the interaction of the model-free and model-
based accounts as model-free dopaminergic prediction 
error signals are able to influence the function of several 
model-based structures (OFC, hippocampus, amygdala, 
ACC, insular cortex).

Results
The proactive brain builds a model of the environment
A key issue of model-based learning concerns to how 
the brain creates the internal representations of the envi-
ronment, thus how it segments and identifies relevant 
stimuli, contexts and actions [10]. The world model must 
represent the salient features of the external and inter-
nal (interoceptive, viscerosensory, affective and cogni-
tive) environment. Previously, building on the proactive 

brain concept coined by Bar [19], we have proposed that 
model-based learning utilizes association-based con-
text frames to build its world model, upon which for-
ward looking mental simulations and predictions may 
be formulated [4]. A key to this concept is the creation 
of context frames. This is done by arranging stimuli (e.g. 
unconditioned stimuli and their conditioned cues) and 
their contexts into context frames. Contexts encompass 
internal [cognitive/affective (including reward-related), 
interoceptive (physiological and neurohumoral)] and 
external (spatial, temporal, social or cultural) settings 
[20, 21], thus context frames contain a priori information 
about the scalar value of reward [22]. (Context frames 
have been also referred to as schemata or scripts [19, 
23]).

Context frames contain contextually associated infor-
mation as an average of similar contexts containing 
typical, generic representations and constant features. 
Thus they include the probable stimuli and cues clus-
tered together, their relationships and their affective and 
reward value [19, 23]. Furthermore, context frames come 
to signal cue-context associations reflecting statistical 
regularities and a lifetime of extracting patterns from 
the environment (related to contingencies, spatial loca-
tions, temporal integration, etc.) [23, 24]. Organization 
of context frames enables rudimentary cue- or context-
related information to retrieve the most relevant context 
frame from memory, by means of associative processes 
[23, 24]. Furthermore it helps to cope with ambiguity and 
uncertainty, as coarse contextual information is sufficient 
to activate the most relevant context frame, which may 
assist in predicting the most probable identity of the cue. 
This stands to the extent that contextual retrieval may 
be used to disambiguate the cue-reward relationship (in 
context discrimination tasks [25]).

We feel that use of context frames for modelling the 
environment offers a sound hypothesis regarding how 
the agent generates a simplified representation of the 
environment, and how it defines the relevant states used 
for model-based learning. Furthermore it provides a fea-
sible mechanism to identify relevant states and actions 
regardless the noise encountered in the sensory environ-
ment. (It should be noted that these context frames are 
conceptually similar to (if not equivalent with) the states 
of the reinforcement learning framework [3, 26], and they 
also correspond with the ‘task space’ described by others 
[27]).

The environment is transformed into context frames 
by means of cue and context conditioning. Cue and 
context conditioning are two concepts familiar to Pav-
lovian learning, with cue conditioning being the central 
paradigm [28]. Nonetheless, significance of context con-
ditioning (emerging as context’s rising role in shaping 
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cognitive and affective processes) is being increasingly 
acknowledged [20]. Cue and context conditioning are 
done by parallel but richly interconnected systems, with 
prior research pinpointing the amygdala as a neural sub-
strate that is the prerequisite for affective processing of a 
stimuli as well as for cue-conditioning (e.g. forming asso-
ciations between cues and primary reinforcers) [29, 30]. 
Furthermore, amygdaloid input, representing subcortical 
inferences pertaining to the affective and motivational 
value of the stimulus, is incorporated into decisions by 
function of the OFC [31]. Hippocampus assumes a cen-
tral role in context conditioning, as the hippocampal area 
is critical for providing complex representation of signals; 
and its link with the OFC has been implicated in the inte-
gration of declarative representations with other infor-
mation to guide behavior [20, 29]. Additionally, recent 
observations showed an interaction between the hip-
pocampus and OFC in support of context-guided mem-
ory [32]. Furthermore using this proactive framework, 
we have previously proposed that the basolateral amyg-
dala computes cue-reward, while the hippocampus forms 
context-reward contingencies, respectively [4]. Summa-
rizing, using the proactive framework for reinforcement 
learning, we lay out a representational architecture based 
on cue-context associations and propose that OFC has 
a central role in computing state-reward contingencies 
based on the cue-reward, and context-reward informa-
tion that are delivered by the amygdala and hippocam-
pus, respectively.

The orbitofrontal cortex compounds the reward function 
attribute of the Bellman equation
The central proposition of the current article is that the 
reward function of the Bellman equitation ‘R(s,a,s′)’, 
descriptive of the agent’s knowledge of the environment, 
is built by the OFC with distinct parts assuming well dif-
ferentiated roles (the medial and lateral part contributing 
to state-reward contingency and state-action-state con-
tingencies, respectively). The reward function contains 
information about the scalar value of reward and the 
state-action-state’ contingencies (e.g. it informs about a 
successive state following action ‘a’). Using the proactive 
model of reinforcement learning and experimental find-
ings of others, we propose that the mOFC integrates cue- 
and context-based pieces of information provided by the 
amygdala and hippocampus, respectively, to assess cue-
context congruence. Based on cue-context congruence, 
it identifies the context frame most relevant for a given 
state, to extract information regarding reward expecta-
tions. Furthermore, we provide insight that the lOFC 
may contribute to the credit assignment domain of action 
selection by having access to information about state-
action-state’ contingencies. To support our proposal, 

relevant theoretical and experimental findings of others 
will be presented in the following sections.

The integrative function of OFC is well in agreement 
with its anatomical position, as it complies input from 
all sensory (e.g. visual, auditory etc.) modalities and sub-
cortical (e.g. hippocampus, amygdala, ventral striatum, 
VTA, etc.) areas [33]. In line with this central position 
is OFC’s ability to integrate concrete and abstract multi-
sensory perceptual input with memories about previous 
stimuli, state transactions as well as affective and incen-
tive value of associated outcomes [27, 29, 32].

Hypotheses indicating that the OFC represents models 
for reinforcement learning has been formulated by oth-
ers as well. Similar to our proposition is the concept of 
Schoenbaum and colleagues, who laid out a sophisticated 
model, in which the OFC encodes ‘task states’ by inte-
grating stimulus-bound (external) and memory-based 
(internal) inputs. A central theme of this model is the 
ability of OFC to integrate disparate pieces of reward-
related information in order to determine the ‘current 
state’, namely the current location on a cognitive map 
[27]. Recent experimental findings corroborated this con-
cept by providing electrophysiological evidence that OFC 
encodes context-related information into value-based 
schemata, by showing that OFC ensembles encompass 
information about context, stimuli, behavioral responses 
as well as rewards associated with states [32]. Others have 
shown that blood oxygen level dependent (BOLD) func-
tional magnetic resonance imaging (fMRI) signal, emit-
ted by the OFC, correlates with reward value of choice in 
the form of a common currency that enables the discrim-
ination between potential states based on their relative 
values [34, 35]. Valuation of states tend to occur auto-
matically even if the cue is presented without the need 
for making decisions [36]. Further results posit that the 
OFC, rather than providing expected values per se, sig-
nals state values capturing a more elaborate frame about 
internal and external states including rewards, especially 
in the face of ambiguity [37]. The grave performance on 
tasks that mandate the disambiguation of states that are 
externally similar yet differ internally, when the OFC is 
impaired, points to the profound role this structure plays 
in creating new states (e.g. context frames) based on 
internally available information. Conversely, other lesion 
studies also implicated the significance of OFC in inte-
grating contextual information into decisions, as human 
patients suffering from OFC impairment were shown to 
make irregular decisions, possibly because implications 
of the decision-making context were ignored, a behavio-
ral finding that paralleled decreased BOLD signal in the 
related area [31, 38]. Contextual influence on decision-
making is further captured by the framing effect, e.g. the 
contextual susceptibility of decision making, an effect 
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that is also dependent on the intact functioning of the 
OFC [31].

OFC’s contribution to the other key element of the 
reward function, e.g. credit assignment, also has ante-
cedents in literature. Credit assignment, one of the two 
domains determining action selection, is the association 
of behaviorally relevant stimulus with the action leading 
to preferable outcomes, by detecting state-action-state’ 
contingencies (as opposed to the policy domain that 
denotes choosing and implementing the most fruitful 
action from an available action set, see below) [39]. Credit 
assignment attributes value to a stimulus as a function of 
the precise history of actions and rewards with respect to 
the antecedent stimulus [40]. The OFC (in several reports: 
lOFC) has been identified as the structure that is respon-
sible for credit assignment, as this subdivision was shown 
to conjointly encode recent history of state transitions and 
rewards, parallel to being able to alter the weight of an 
action that is indicative of the reward value in a given con-
text [27, 33]. Single neuron recordings were also in line 
with credit assignment showing that the lOFC encodes 
the state transitions leading to the delivery of reward 
in a way that these representations are reactivated and 
maintained over different reward types [35]. Lesion stud-
ies implementing reward devaluation tasks offer similar 
insight, as macaques made fewer choices of the stimuli 
that signal the unsated reward, if lOFC was lesioned [41], 
a finding indicative of impaired credit assignment. That 
choices of the stimuli signaling unsated reward were less 
frequent upon lOFC lesions indicates the ability of the 
OFC to integrate cue- (e.g. the signal for reward), con-
text- (e.g. internal context reflective of satiety) and action- 
(e.g. choosing the signal that indicates reward) related 
input. Conversely, Rushworth and colleagues have shown 
that OFC uses hippocampal/parahippocampal input to 
acquire and apply task-specific rules [35].

Implications that OFC conjointly signals informa-
tion about reward identity, value, location, behavioral 
responses and other features [27, 42] was corroborated by 
works showing that OFC neurons encode all aspects of a 
task, they attribute rewards to preceding states and code 
state transitions [29, 37]. Prior experimental evidence 
has underlined the OFC neurons’ ability to exhibit out-
come expectant activity based on afferent input, thereby 
signaling the value of outcomes in light of specific cir-
cumstances and cues [43]. This underscores OFC’s role 
in adapting to changing environments by enabling flex-
ible behavior [43–47] facilitated by the formation of new 
associations between cues (states), state transitions and 
rewards via indirect links with other brain areas [33]. 
Using the Pavlovian over-expectation task, Takahashi and 
colleagues have revealed the critical contribution of OFC 
in influencing ongoing behavior and updating associative 

information by showing that reversible inactivation of 
the OFC during compound training omits the reduced 
response to individual cues [47]. Further support for the 
OFC, an essential part of the model-based reinforcement 
learning system, is reflected by the finding that lOFC 
lesioned animals, rather than crediting a specific cue or 
cue-action pair for the reward obtained, emit a signal 
characteristic of the recency-weighted average of the 
history of all reward received. Use of recency-weighted 
average to calculate the value of states is characteristic of 
model-free temporal difference learning [1, 3], allowing 
for the implication that, in the event, the model-based 
system is lesioned, the complementary model-free learn-
ing system will step in.

Discussion
Albeit others have also formulated hypotheses that the 
OFC represents models for reinforcement learning, our 
proposition furthers this concept by linking a specific 
attribute of the Bellman equation descriptive of rein-
forcement learning to OFC function. A key new finding 
concerns the use of cue-context associations (deducted 
from the proactive brain concept) to explain OFC’s inte-
grative function, with respect to cue- and context-related 
inputs (coming from the amygdala and hippocampus, 
respectively), reward expectations and credit assignment. 
Therefore we propose that the OFC computes the reward 
function attribute of the Bellman equation and thereby 
contributes to model-based reinforcement learning by 
assessing cue-context congruence along and maps cue/
context/action-reward contingencies to context frames. 
By using the reward function, the OFC is able to signal 
predictions related to reward expectation.

To assess the specificity of our model we overviewed 
the function of other, significant interconnected struc-
tures implied in contributing to reinforcement learn-
ing, e.g. ACC, dorsolateral prefrontal cortex (dlPFC), 
pre-supplementary motor cortex (preSMC) and insular 
cortex [48, 49]. We found that their role may be well cir-
cumscribed and distinguished from the role attributed to 
the OFC by the proactive model of reinforcement learn-
ing. As proposed previously OFC’s role in reinforcement 
learning guided decision making concerns the ability to 
make detailed, flexible and adjustable predictions on 
context frames modelling the environment by assessing 
cue-context congruence and by means of credit assign-
ment. With respect to ACC, its most commonly agreed 
upon feature is its engagement in decision making tasks 
that demand cognitive control. Two competing theo-
ries account for ACC’s distinct possible roles, with both 
acknowledging that ACC is involved in action selection 
based on the assessment of action-outcome relations 
[50–53]. Conversely it is involved in monitoring and 
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integrating the outcome of actions [54]. The evaluative 
theory implicates that ACC monitors behavior to detect 
discrepancies between actual and predicted action out-
comes in terms of errors and conflicts [50, 55]. Further-
more using the information about actual and predicted 
action outcomes, ACC may compute an index of unex-
pectedness, similar to the predicted error signal emitted 
by dopaminergic neurons, descriptive of the unexpected-
ness of actions [56]. The response selection theory, on the 
other hand, proposes that, rather than detecting or cor-
recting errors, the ACC guides voluntary choices based 
on the history of actions and outcomes [51] by integrat-
ing reinforcement information over time to construct 
an extended choice-outcome history, with action values 
being updated using both errors and rewards [39].

In addition to governing the relationship between pre-
vious action history and next action choice, the ACC 
assumes a complementary role in exploratory generation 
of new action for the action set, used by reinforcement 
learning (this latter underlies the reinforcement poten-
tial of new situations) [39]. This is reflected by ACC’s role 
in foraging and other similar explorative behavior. Con-
versely ACC activation reflects estimates of the richness 
of alternatives in the environment by coding the differ-
ence between the values of unchosen and chosen options 
as well as the search value [57]. Lesion studies sup-
port ACC’s role in solving the exploration–exploitation 
dilemma reflected by impaired ability to make optimal 
choices in dynamically changing foraging tasks [51].

Summarizing, ACC is involved in one of the two 
domains of action selection, as it supplies information 
regarding the prospect of reward learnt from previ-
ous course of action (with the lOFC contributing to the 
other domain, credit assignment, reflective of behavio-
rally relevant stimuli [39]). An integrative theory of ante-
rior cingulate function also postulated that the ACC is 
responsible for allocating control [58] by associating out-
come values with different response options and choos-
ing the appropriate action for the current environmental 
state [52, 59]. Using this information it directs the dlPFC 
and the preSMC to execute and implement the chosen 
action [52, 59, 60]. Analogous to the proposition that 
the mOFC computes the reward function of the Bell-
man equation, it may also be postulated that the ACC 
computes the policy function of the Bellman equation, 
respectively.

Regarding the involvement of ACC in reinforcement 
learning-based decision making it is also interesting to 
note that ACC (along with other structures like dlPFC and 
preSMC) is part of the intentional choice network (that is 
part of the larger executive network) [52]. Thus this higher 
level organization further supports ACC’s role in govern-
ing action selection in reinforcement learning. The insular 

cortex may be excluded from the line of model-free struc-
tures, given that it fails to meet axiomatic criteria prereq-
uisite for model-free reward prediction error theory [48]. 
Nonetheless insular cortex’s contribution may be assessed 
in terms of model-based reinforcement learning, given its 
dense connections with model-based structures includ-
ing amygdalal nuclei, OFC, ventral striatum, ACC and the 
dlPFC [61]. Its specific relationship with these structures 
is further augmented by the fact that connection is made 
by the outflow of a unique type of neurons called von 
Economo neurons [62]. In line with its functional connec-
tivity, insula is responsible for detecting behaviorally sali-
ent stimuli and coordination of neural resources [60]. By 
means of its anatomical connections insula is able to inte-
grate ascending interoceptive and viscerosensory inputs 
in a way that subjective feelings are transformed to sali-
ence signals influential of decision making [61]. Further-
more the anterior insula is implicated to be a key node, 
a ‘causal outflow hub’ of the salience network (that also 
includes the dorsal ACC) [63] that is able to coordinate 
two large scale networks, the default mode network and 
the executive network. The insula by emitting control sig-
nals via its abundant causal outflow connections is able to 
change the activation levels of the default mode network 
and the executive network, an effect formally shown by 
dynamic causal modeling of fMRI data [64]. Summarizing 
the insula has a central role in salience processing across 
several domains and is involved in mediating the switch-
ing between the activation of the default mode network 
and the executive network to ensure optimal response to 
salient stimuli [60] thus confers indirect, yet significant 
influence on model-based reinforcement learning.

It should be noted that albeit meticulous effort was 
made to associate each area with the most specific 
model-based reinforcement learning related attribute 
(e.g. mOFC: providing the model, lOFC: credit assign-
ment, ACC: action selection, insular cortex: salience) 
there are reports that attribute other function to these 
structures (e.g. ACC and insular cortex coding reward 
prediction error signal [65, 66]).

Computation of model‑free reward prediction error hinges 
on input from the orbitofrontal cortex
Several testable hypotheses come from the bidirectional 
interactions between model-free and model-based learn-
ing. On one hand the OFC is known to project glu-
taminergic efferents to several structures involved in 
model-free reward prediction error signaling, includ-
ing the PPTgN (that offers one of the strongest excita-
tory drives to the VTA [67, 68]), VTA [69] (that emits 
the model-free dopamine learning signal) and ventral 
striatum [16, 70] (that is responsible for computing 
value by compounding varying inputs (Fig.  1) [71, 72]). 
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By reaching PPTgN, OFC may modulate the VTA’s most 
significant stimulating afferent, while OFC’s influence on 
dopaminergic neurons of VTA can extend to the altera-
tion of both the spike and burst activity of dopaminergic 
neurons (e.g. presence of spike activity is prerequisite for 
burst firing). This anatomical connection is further sup-
ported by behavioral tests showing that the OFC’s reward 
expectation signal contributes to the detection of error 
in the reward prediction error signal, if contingencies 
are changing [43]. Relating experimental evidence, utiliz-
ing paradigms dependent on the update of error signals 
based on information about expected outcomes (e.g. the 
Pavlovian over-expectation task, Pavlovian-to-instru-
mental transfer, Pavlovian reinforcer devaluation and 
conditioned reinforcement), also pointed to the involve-
ment of OFC [43]. Furthermore, expectancy-related 
changes in firing of dopamine neurons were shown to 
hinge on orbitofrontal input [37] as single unit record-
ings showed reciprocal signaling in OFC and VTA, which 

latter emits the prediction error during over-expectation 
tasks. This led to the conclusion that the OFC’s contribu-
tion to prediction errors is via its influence on dopamine 
neurons, as reward prediction single unit recordings 
in OFC were clearly related to the prediction error sig-
nal emitted by VTA [47]. Conversely, upon omitting the 
input from OFC, dopamine error signals failed to convey 
information relating to different states and resultant dif-
ferences in reward [37].

This set of assumptions yield the hypothesis that the 
function of VTA dopaminergic neurons may be altered 
by cue-context manipulations leading to the change of 
glutaminergic input emanating from OFC, or by other 
interventions like transcranial magnetic stimulation.

Updating the model by using model‑free reinforcement 
learning signals
Another testable hypothesis concerns the use of model-
free dopaminergic signal to update the model and 

Fig. 1  ‘Proactive’ use of cue-context congruence for building reinforcement learning’s reward function. Left panel Salient stimulus, conceptualized 
as cue, and its context are processed by parallel but richly interconnected systems that center on the amygdala and hippocampus for cue-based 
and context-based learning, respectively. By means of Pavlovian learning, a set of relevant context frames are formed for each cue (hence, the 
uniform subscript of cues indicates the fact that a cue may be associated with distinct contexts, accordingly with distinct rewards). These context 
frames encompass permanent features of the context. Based on computational models of others and theoretical considerations, we presume that 
context frames also include reward-related information. According to the concept of proactive brain [23], when an unexpected stimulus is encoun-
tered, cue and context-based gist information is rapidly extracted that activates the most relevant context-frame that based on prior experience. 
Building on this, we propose that the reward function attribute of the world model is compiled by the OFC, which, by determining cue-context 
congruence, is able to identify the most relevant context frame. Using this context frame as a starting point (e.g. state), forward looking simulations 
may be performed to estimate expected reward and optimize policy (dark blue line). Right panel Upon activation of the most relevant context frame, 
predictions related to the expected reward will be made in the OFC. This information encompasses substantial environmental input and forwarded 
by glutaminergic neurons to the ventral striatum, VTA and PPTgN. The VTA will emit the reward prediction error signal, inherent of the model-free 
reinforcement learning system, by integrating actual reward and predicted reward information. In line with observations of others, we suggest that 
OFC derived expected reward information is incorporated into the reward prediction error signal (dotted green line). Furthermore, we propose that 
the scalar value of reward is updated by the reward prediction error signal contributing to the update of the world model. Abbreviations: action 
(a), context frame (CFx), model-based reinforcement learning (MB-RL), model-free reinforcement learning (MF-RL), Pavlovian learning (PL), reward 
(Rx), reward prediction error (RPE), transition (t), ventral striatum (VS), orbitofrontal cortex (OFC), ventral tegmental area (VTA), pedunculo-pontine-
tegmental nucleus (PPTgN), black dot transitory state, black arrow glutaminergic modulation, green arrow dopaminergic modulation
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action selection attributes of model based reinforce-
ment learning. Linking our proactive model of rein-
forcement learning to the mathematical formalism 
of the Bellman equation gives a framework to jointly 
draw inferences concerning spatiotemporal environ-
mental contingencies included in the reward function 
and action selection reflective of the reward structure 
contributing policy formation. As we have proposed, 
information about the scalar value of reward is encoded 
in context frames based on its spatiotemporal proxim-
ity with cues. This is done in a way that context frames 
may be mobilized based on cue-context congruence. 
Nonetheless it may be further inferred from our proac-
tive model that feedback regarding the scalar value of 
reward, signaled as reward prediction error, may update 
the reward attribute of the cue-relevant context frame 
as follows. Neurobiological observations discussed pre-
viously show that, the main targets of VTA dopamin-
ergic neurons are the ventral striatum (emitting the 
value signal that is characteristic of model-free learn-
ing), amygdala, hippocampus, OFC, ACC and insular 
cortex [48, 49, 70, 73, 74]. Considering the three factor 
rule, an extended form of the Hebbian rule, i.e. synap-
tic strength is increased if the simultaneous presynaptic 
and postsynaptic excitation coincides with dopamine 
release by means of long-term potentiation [75, 76], it 
may be postulated that in the event of dopamine release 
(the reward prediction error serving as a teaching sig-
nal) cue (amygdala), context (hippocampus) and cue-
context congruence (OFC) relations are wired together, 
thus altering the reward structure (e.g. the environmen-
tal model). Therefore, the model-free reward prediction 
error output is necessary for updating the world model 
subserving the model-based system.

In addition, we have provided evidence that the ACC 
governs action selection and as such compiles the policy 
function. Conversely dopaminergic reward prediction 
error signals were also implicated to intervene with the 
process of action selection in the ACC. As it follows, 
the prediction error signal governs the decision, related 
to which of the several motor signals (available from the 
action set), should control the whole motor system [49], 
thus it determines action selection and as such updates 
the policy function.

Summarizing, this implication offers further indirect 
support for the interaction between model-free and 
model-based accounts by suggesting that model-free 
reward prediction error signal may contribute to updat-
ing the model used by model-based learning by altering 
the scalar value of rewards in the relevant context frames 
and it updates the policy underlying action selection to 
maximize outcomes.

Clinical implications
The theoretical collision of the concept of proactive 
brain with that of reinforcement learning has substan-
tial clinical relevance. A clinical exemplar, linking cue-
context congruence to reinforcement learning concepts, 
comes from drug seeking behavior of addicts as it was 
shown that drug-paired contexts increase the readiness 
of dopaminergic neurons to burst fire upon encounter-
ing drug cues. This observation parallels dopamine’s 
tendency to prematurely respond to reward cues due to 
drug-induced alteration of the striatum. These effects 
could possibly be a net of altered OFC input to VTA 
and downstream structures that leads to the change of 
population activity and burst firing capacity of dopamin-
ergic neurons [69]. Clinically, these observations may be 
related to the strong preference for drug-paired envi-
ronments and cues in case of addiction, a phenomenon 
absent in non-addicts [77].

Furthermore proposing that reward-related informa-
tion and action selection is governed by cue and con-
text information (e.g. by the mobilization of the most 
relevant context frame based on cue-context congru-
ence), we offer a framework for behavior modification. 
Given that reward information used by reinforcement 
learning depends on the statistical regularities of cue-
context-reward co-occurrence, direct manipulation 
of cue-context-reward contingencies could overwrite 
former regularities to alter the reward function. Some 
currently used techniques of cognitive behavioral ther-
apy (e.g. desensitization, chaining, triple or seven col-
umn technique) could be interpreted in terms of this 
framework. Furthermore, exploitation of technologi-
cal advancements could be used to facilitate mental 
processes such as daydreaming or visualization [19] 
that contribute to the alteration of the model used by 
model-based learning. With the help of current technol-
ogy, patients engage in activities in virtual settings, fac-
ing experiences that, according to our concept, would 
serve as input for shaping future behavior by formation 
of novel Pavlovian learning-based associations that alter 
existing spatio-temporal contiguities of cues, contexts 
and rewards, and may even extend to changes in state-
state’ transitions.

Conclusions
In summary, we put forward several testable hypotheses 
regarding how the brain handles model-based reinforce-
ment learning. We postulated several structures of the 
model-based network to be involved in computing spe-
cific attributes of the Bellman equation, the mathemati-
cal formalism used to conceptualize machine learning 
based accounts of reinforcement learning. Furthermore 
we provided a plausible mechanism of how the model, 
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used by model-based learning system, is created by 
organizing cue, context, reward information into context 
frames and capturing conjoint information of stimulus, 
action and reward. Furthermore based on the bidirec-
tional interaction of model-free and model based struc-
tures we made two further proposition. One, given the 
reward value related input to the model-free structures 
(PPTgN and VTA), cue-context manipulations or tran-
scranial magnetic stimulation may be applied to alter 
the model-free dopaminergic signal. Two, reward pre-
diction error related dopamine signal may contribute to 
the update of both the model and the policy functions 
of model-based reinforcement learning. Furthermore 
our proactive framework for reinforcement learning 
has clinical implications as it builds on the use of cue-
context associations to offer a representational archi-
tecture, upon which behavioral interventions may be 
conceptualized.

Methods
The aim of the study was to provide a novel theoretical 
framework that formally links machine learning based 
concepts e.g. Bellman equation with the neurobiology 
of reinforcement learning and concepts of the proactive 
brain, by means of deductive reasoning. The merit of this 
concept is that it gives rise to several testable hypotheses 
and offers a representational architecture based on cue-
context associations carrying clinical implications. The 
current work builds on our former work [4] and is based 
on conceptual and the experimental findings of others, 
cited throughout the text.
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