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Abstract 

Background:  Mechanosensitive afferents innervating the bladder increase their firing rate as the bladder fills and 
pressure rises. However, the relationship between afferent firing rates and intravesical pressure is not a simple linear 
one. Firing rate responses to pressure can differ depending on prior activity, demonstrating hysteresis in the system. 
Though this hysteresis has been commented on in published literature, it has not been quantified.

Results:  Sixty-six bladder afferents recorded from sacral dorsal root ganglia in five alpha-chloralose anesthetized 
felines were identified based on their characteristic responses to pressure (correlation coefficient ≥ 0.2) during saline 
infusion (2 ml/min). For saline infusion trials, we calculated a maximum hysteresis ratio between the firing rate dif-
ference at each pressure and the overall firing rate range (or Hmax) of 0.86 ± 0.09 (mean ± standard deviation) and 
mean hysteresis ratio (or Hmean) of 0.52 ± 0.13 (n = 46 afferents). For isovolumetric trials in two experiments (n = 33 
afferents) Hmax was 0.72 ± 0.14 and Hmean was 0.40 ± 0.14.

Conclusions:  A comprehensive state model that integrates these hysteresis parameters to determine the bladder 
state may improve upon existing neuroprostheses for bladder control.
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Background
The lower urinary tract (LUT) has two main functions: 
storage (continence) and voiding (micturition) of urine. 
Normal operation of these two functions involves coor-
dinated autonomic and voluntary neural control utiliz-
ing local, spinal, and supraspinal pathways [1] and can be 
affected in many conditions including spinal cord injury, 
Parkinson’s disease, and multiple sclerosis. A thorough 
understanding of the LUT physiology can aid in develop-
ing better treatments for patients suffering from bladder 
dysfunction.

Sensory information from the LUT is transmitted 
to the spinal cord and brain via afferent neurons in the 
pelvic, hypogastric, and pudendal nerves [2]. Afferent 
information from the bladder is primarily transmitted 

by pelvic nerves that originate in the caudal lumbosa-
cral dorsal root ganglia (DRG) [3, 4]. These afferents are 
mainly divided into myelinated Aδ-fibers and unmy-
elinated C-fibers. Aδ-fibers are mechanosensitive and 
respond primarily to passive bladder distension and 
active contractions [5–7]. These fibers typically encode 
bladder wall tension and/or strain [8, 9] and bladder 
pressure [6, 10, 11] and are considered to be tension 
receptors ‘in-series’ with the muscle fibers of the blad-
der wall [12]. Some mechanosensitive fibers respond to 
bladder distension but not contractions and are thought 
to instead encode volume, irrespective of pressure [13], 
with receptors “in-parallel” with the muscle fibers [14]. 
C-fibers, in contrast, generally respond to noxious stim-
uli such as chemical irritants, cold infusants, and high 
pressures (greater than 30 mmHg) [14, 15], but have also 
been reported to respond to volume [13].

Mechano-sensitive Aδ-fibers are silent when the 
bladder is empty, but begin to fire once a pressure 
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threshold is reached and gradually increase their fir-
ing as the bladder fills and pressure rises [6, 10, 12, 16, 
17]. Pressure thresholds for these neurons are typically 
between 5 and 20 cmH20 [3, 10, 17, 18], with neurons 
of different pressure thresholds being successively 
recruited as the bladder fills [16]. Some of these fib-
ers decrease their firing or plateau at high pressures 
[14]. However, the relationship between bladder affer-
ent activity and intravesical pressure is not a simple 
linear one. Firing rate responses to pressure can differ 
depending on prior activity, demonstrating hysteresis 
in the system [8, 16].

Hysteresis is a nonlinear phenomenon in which the 
output of a system depends on both the current input 
and recent history. It commonly occurs in ferromagnetic 
and ferroelectric material but is present in other systems 
including many mechanosenory systems [19], for exam-
ple, in stretch receptors in cray fish [20] and muscle spin-
dles in cats [21]. Hysteresis is also a property of smooth 
muscle, which makes up the detrusor layer in the bladder 
wall [22].

Hysteresis in the bladder pressure-bladder affer-
ent relationship has been highlighted in previous LUT 
literature [8, 16, 23] but has not been quantified or 
compared across different bladder states. The goal of 
this study was to quantify the hysteretic relationship 
between bladder afferent activity and bladder pressure 
during non-micturition bladder contractions as the 
bladder is being filled and also when it is at an isovolu-
metric state. Neural activity was recorded from sacral 
dorsal root ganglia at the S1 and S2 levels, which con-
tain the cell bodies of pelvic neurons, in cats. Neurons 
that responded to bladder filling demonstrated a quan-
tifiable hysteresis that was similar to examples found in 
the published literature. A better understanding of this 
hysteretic relationship could be utilized to implement 
a comprehensive state model for a closed-loop bladder 
neuroprosthesis, in which pressure is estimated from 
afferent activity and stimulation is delivered for bladder 
control accordingly. Such a system could be used clini-
cally for patients suffering from spinal cord injury and 
other neurogenic bladder disorders.

Methods
Subjects
Five intact adult male cats (age: 0.9–1.4  years old, 4.2–
5.2  kg, domestic short-haired, Liberty Research, Inc, 
Waverly, NY) were used in non-survival experiments in 
this study with one cat used per experiment. All proce-
dures were approved by the University of Michigan Insti-
tutional Animal Care and Use Committee, in accordance 
with the National Institute of Health’s guidelines for the 
care and use of laboratory animals.

Experimental setup and surgical procedure
Animals were initially anesthetized with a ketamine 
(6.6  mg/kg)–butorphanol (0.66  mg/kg)-dexmedetomi-
dine (0.033  mg/kg) intramuscular (IM) dose, intubated, 
and then maintained on isoflurane anesthesia (2–4  %) 
during surgical procedures. Respiratory rate, heart rate, 
end-tidal CO2, O2 perfusion, temperature, and intra-
arterial blood pressure were monitored continuously 
using a Surgivet vitals monitor (Smiths Medical, Dublin, 
OH). Intravenous (IV) lines were inserted into one or 
both cephalic veins for drug and fluid infusions. Intra-
venous fluids (1:1 ratio of lactated Ringers solution and 
5 % dextrose) were infused at a rate of 5–10 ml/kg/h and 
increased up to 30 ml/kg/h during surgery as needed.

A catheter was inserted into the bladder for intravesical 
fluid infusion and pressure monitoring. In experiments 1, 
3, and 4, an abdominal midline incision was performed 
to expose the bladder and a 6 Fr supra-pubic dual-lumen 
catheter (Laborie, Williston, VT) was inserted into the 
dome of the bladder and secured with a purse-string 
suture. A single-lumen 3.5 Fr catheter (Utah Medical 
Products, Midvale, UT) and dual-lumen 3.5 Fr catheter 
was inserted into the bladder via the urethra in experi-
ments 2 and 5, respectively.

Following bladder line placement, a midline dorsal cut 
was made to expose vertebrae from L7 to S3. The spinal 
muscles were reflected from the vertebrae and a laminec-
tomy was performed to access sacral DRG (S1–S2) in the 
cat [18]. Iridium oxide microelectrode arrays (5 × 10 and 
4 ×  10 ICS-96 MultiPort split planar arrays, Blackrock 
Microsystems, Salt Lake City, UT) were implanted into 
the DRG either bilaterally or unilaterally using a pneu-
matic inserter (Blackrock Microsystems). These types of 
multielectrode arrays are a standard approach for iden-
tifying and recording from dozens of neurons simultane-
ously in DRG [18, 23–27] and peripheral nerves [28–30]. 
For experiments 1 and 5 the 5 ×  10 array was inserted 
in the left S1 DRG and the 4 × 10 into the left S2 DRG. 
For experiments 2, 3, and 4, 5 × 10 arrays were inserted 
bilaterally in S1 and 4 × 10 arrays were inserted bilater-
ally in S2. Microelectrode shank lengths were either 0.5 
or 1.0 mm with 0.4 mm inter-shank spacing. The ground 
wires were connected to a stainless steel needle inserted 
in the skin lateral and caudal to the laminectomy incision 
site and reference wires were placed near the spinal cord. 
Animals were then transitioned to alpha-choloralose 
(70 mg/kg induction; 20 mg/kg maintenance; doses given 
IV) for subsequent testing. Alpha-chloralose anesthesia 
was augmented with buprenorphine (0.01  mg/kg; given 
every 8–12 h IV).

DRG neural data was acquired at a rate of 30 kHz and 
band-passed filtered (250 Hz–7.5 kHz) using a Grapevine 
neural interface processer and Trellis recording system 
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(Ripple, Salt Lake City, UT). A global amplitude thresh-
old, between −20 and −35 µV (depending on the noise 
amplitude), was set for all electrode channels. Any signal 
crossing of the threshold was captured as a spike snip-
pet and stored for offline analysis. Bladder pressure was 
monitored using a pressure transducer (DPT-100, Utah 
Medical Products, Midvale, UT) and transducer amplifier 
(World Precision Instruments, Sarasota, FL). The bladder 
pressure signal was recorded with the Grapevine sys-
tem at 1  kHz. During testing (see "Experimental proce-
dures" section) saline was infused into the bladder using 
a syringe pump (New Era Pump Systems, Inc., Farming-
dale, NY). Figure 1 shows the experimental set-up.

Experimental procedures
Slow fill trials
The bladder was first emptied using the bladder catheter. 
Sacral DRG neural activity was recorded while saline was 
infused into the bladder at a near physiological rate of 
2 ml/min [31]. In most trials, this was done until dripping 
from the external meatus or around the urethral catheter 
(for those experiments where the catheter was inserted 
via the urethra) was observed. This infused volume was 
defined as the “leak volume” for a given experiment. For 

trials in which infusion was stopped before leaking was 
observed, then the leak volume from a prior fill sequence 
was assumed. For experiments 1–4, room-temperature 
saline (22 °C) was used; whereas for experiment 5, body-
temperature saline (41 °C) was used. Two infusion trials 
per experiment (cat) in which there were only non-void-
ing bladder contractions were used in the analysis.

Isovolumetric trials
In experiments 3 and 4, isovolumetric trials were per-
formed with the bladder volume within 20–50 ml, while 
assuming negligible urine generation. Neural activity and 
bladder pressure were recorded for non-voiding bladder 
contractions.

After completion of all testing, animals were eutha-
nized with a 3 ml intravenous dose of sodium pentobar-
bital (390 mg/ml) while under deep anesthesia.

Data analysis
After data collection, spike snippets were sorted in 
Offline Sorter v3.3.5 (Plexon, Dallas, TX), using prin-
cipal component analysis followed by manual review 
to identify unique spike clusters. In MATLAB (Math-
works, Natick, MA), instantaneous firing rates for each 
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Fig. 1  Experimental setup. Illustration of a cross-section through the spinal cord highlighting the pelvic nerves and dorsal root ganglia at the 
sacral level. Arrays were implanted in S1 and S2 DRG. Saline was infused into bladder either via a supra-pubic line or an intraurethal line. Intravesical 
pressure was monitored with a pressure transducer and amplifier. Both neural data and pressure were recorded with a Grapevine data acquisition 
system. Image modified from Bruns et al. [57]
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unit were calculated at intervals of 0.5  s. Discrete spike 
events were converted into a smoothed time series of fir-
ing rates using a non-causal linear filter with triangular 
kernel of width 1  s [27]. Bladder pressure was filtered 
(4 Hz low pass). Units whose firing rates highly correlated 
with bladder pressure (correlation coefficient, ρ  ≥  0.2) 
over the course of a saline infusion trial were identified 
as bladder units. These units were confirmed visually to 
increase firing with increasing bladder pressure as shown 
in the literature [6, 10, 16, 18].

Hysteresis in the bladder pressure-firing rate relation-
ship was calculated during bladder contractions using a 
method derived from Kosmulski et  al. [32] for electro-
chemical capacitors. Sets of three contractions (pressure 
change ≥  10 cmH2O, stratified by 25  % intervals of the 
leak volume for slow fill trials) were used for hysteresis 
calculations (Fig. 2a). The start and end of each contrac-
tion was determined based on pressure inflection points. 
For each contraction, the pressure trace was divided into 
2 cmH20 bins and the mean firing rate corresponding to 
pressure within each bin was calculated. The mean fir-
ing rate and pressure were plotted against each other 
(Fig.  2c). Pressure ranged from a minimum value (Pmin) 
to a maximum value (Pmax) with a corresponding firing 
rate range from FRmin to FRmax. Figure 3 shows a stylized 
diagram of pressure plotted against firing rate demon-
strating how the hysteresis values are calculated. For each 
binned pressure value (P1, P2, P3, and P4), the difference 
in firing rate (ΔFR) is calculated and divided by the firing 
rate range (FRmax − FRmin). This ratio is defined as ΔFRrel. 
The following two hysteresis indices were computed: 
Hmax and Hmean. Hmax is the maximum ΔFRrel and 
Hmean is the average ΔFRrel. The start and end points 
were excluded in the Hmean calculation to avoid over-
representation of the narrow ends of the pressure-firing 
rate curves. Hmax and Hmean were then averaged across 
the 3 contractions. Hmax and Hmean are dimensionless 
values ranging from 0 to 1, where 0 represents no hyster-
esis and 1 represents maximum hysteresis.

Statistical analysis
A linear mixed models ANOVA with volume range as the 
fixed effect and a random intercept of animals (experi-
ments) was carried out to determine if there was any 
statistical difference in Hmax or Hmean values between 
volume ranges for both slow fill and isovolumetric tri-
als. Given the small number of animals and variation in 
the number of bladder units observed per experiment, 
we went with the linear mixed models with experiment 
as the random term in the model. P values (significance 
level α  <  0.05) were obtained by likelihood ratio tests 
of the full model with the effect in question (volume) 
against the model without the effect in question [33]. To 

test for significance between experiments, an ANOVA 
linear model was performed. Post hoc analysis was done 
using the Tukey–Kramer multiple comparison test. Rela-
tionships between Hmax and Hmean, Hmax and ρ, and 
Hmean and ρ were assessed using regression analysis. 
MATLAB and Microsoft Excel (Redmond, WA) were 
used to perform statistical tests. Values are reported as 
mean ± standard deviation.

Results
Bladder units
Seventy units from five experiments were identified as 
bladder units (ρ  ≥  0.2), with 57 units in S1 DRG and 
13 units in S2 DRG. These units were quiescent at very 
low pressures and increased firing as bladder pressure 
increased. Four of those units did not correlate with blad-
der contractions and were excluded from further analy-
sis. Forty-six units were present in the slow fill trials with 
average ρ =  0.57 ±  0.16 (correlation analysis done over 
the infusion period, n  =  5 experiments). Correlation 
coefficients did not differ significantly across experi-
ments [F(1,44) =  1.65, p =  0.21]. For the isovolumetric 
trials, there were 33 units with average ρ = 0.62 ± 0.19 
(correlation computed over the period of analysis, n = 2 
experiments). Correlation coefficients did not differ sig-
nificantly across experiments [F(1,31) = 0.02, p = 0.89]. 
Thirteen units overlapped in both the slow fill and iso-
volumetric trials.

Hysteresis for saline infusion and isovolumetric trials
Figure  4 shows the average Hmax and Hmean indices, 
along with the average correlation coefficient, for each 
experiment. The average Hmax was 0.86  ±  0.09 with 
values ranging from 0.68 to 0.99 and did not differ sig-
nificantly across experiments [F(1,44) = 1.61, p = 0.21]. 
The average Hmean was 0.52 ±  0.13 with values rang-
ing from 0.27 to 0.76. Hmean was significantly higher 
in experiment 5 compared to experiments 1, 3, and 4 
[F(1,44) = 9.31, p < 0.01]. For the isovolumetric dataset, 
the average Hmax was 0.72 ±  0.14 with values ranging 
from 0.38 to 1.00 and the average Hmean was 0.40 ± 0.14 
with values ranging from 0.09 to 0.73. There was no sig-
nificant difference in Hmax [F(1,31) = 0.39, p = 0.53] or 
Hmean [F(1,31) = 3.85, p = 0.06] among experiments.

For slow fill trials, there was no difference in hysteresis 
observed at different volume ranges (Hmax: χ2 (3) = 5.91, 
p = 0.12; Hmean: χ2 (1) = 0.83, p = 0.36) (Fig. 5). Note, 
given the variability in the number of contractions pro-
duced for the different animals, some units only had hys-
teresis values for one given volume range, whereas others 
had hysteresis values for multiple volume ranges. Fig-
ure 6 shows the breakdown of Hmax and Hmean across 
different volumes for the isovolumetric trials. There was 
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no difference between volumes (Hmax: χ2 (1)  =  0.70, 
p = 0.40; Hmean: χ2 (1) = 3.04, p = 0.08).

For slow fill trials, bladder pressure-firing rate relation-
ships with greater Hmax values also had greater Hmean 
values with R2 =  0.33, p  <  0.01 (Fig.  7a). Interestingly, 
units that correlated better with bladder pressure had 
lower Hmax values (R2 = 0.13, p = 0.01) (Fig. 7b). How-
ever, there was no correlation between Hmean and cor-
relation coefficient (R2 = 0.01, p = 0.48, Fig. 7c). Similar 
trends were observed with hysteresis values from iso-
volumetric trials (Hmax vs Hmean: R2 = 0.52, p < 0.01; 
ρ vs Hmax: R2 = 0.41, p < 0.01, ρ vs Hmean: R2 = 0.03, 
p = 0.37, Fig. 7).

The effect of different firing rate calculation approaches 
was analyzed. In addition to the non-causal linear filter 
with triangle kernel (described in “Methods”), two other 
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methods were used to calculate firing rates: instanta-
neous firing rate and boxcar. At every 0.5  s, the instan-
taneous firing rate was determined by calculating the 
reciprocal of the interval between the two spikes sur-
rounding the time point [34]. For the boxcar method 
(rate histogram) the spike rate at every 0.5  s was calcu-
lated as the spike count within 1  s bins divided by the 
bin size [11, 14]. The correlation coefficient, Hmax, and 

Hmean were compared for all units for each firing rate 
approach for all slow fill trials. Overall, little difference 
was seen in the hysteresis values obtained using the dif-
ferent firing rate methods. Figure  8 shows an example 
from one experiment comparing the hysteresis values 
and correlation coefficients for 3 units. Across all experi-
ments, the triangle kernel method resulted in the highest 
ρ between firing rate and pressure for a given unit and 
was the method selected for our analysis.

Comparison to published literature
The hysteresis indices, Hmax and Hmean were calcu-
lated for bladder pressure-firing rate relationships from 
published literature (Table  1). In general, even though 
the data in these papers were collected under a vari-
ety of conditions and from different types of bladder 
neural signals and sources, similar Hmax and Hmean 
values were obtained, with Hmax  =  0.64  ±  0.13 and 
Hmean = 0.39 ± 0.14.

Discussion
The goal of this study was to quantify the hysteresis 
observed in bladder pressure-bladder afferent relation-
ships. A total of 66 bladder afferents across S1 and S2 
DRG in 5 cats were identified that correlated with blad-
der pressure and bladder contractions. Hysteresis was 
observed in the firing rate responses of these afferents to 
bladder pressure. Analysis of contractions during slow 
fill and isovolumetric trials yielded Hmax values ranging 
from 0.38 to 1.00 and Hmean values ranging from 0.09 to 
0.76 (Fig. 4). Hysteresis values did not differ across differ-
ent volume ranges (Figs. 5, 6).

In general, afferents that correlated better with blad-
der pressure tended to have lower Hmax values (Fig. 7b). 
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However, there was no relationship observed between 
Hmean and how well an afferent correlated with blad-
der pressure (Fig. 7c). On closer examination, the inverse 
relationship seen between Hmax and correlation coef-
ficient for the slow fill trials was observed in two of the 
five animals (experiments 2 and 3). For two other ani-
mals (experiments 1 and 5), this was actually a positive 
relationship. An inverse relationship between Hmax and 
correlation coefficient was also observed in both experi-
ments (3 and 4) for the isovolumetric trials. Intuitively, it 
would seem to follow that there would be less hysteresis 
where there is a more linear firing rate-pressure relation-
ship, but this was not the case for all animals. These indi-
vidual differences in responses may partly be explained 
by how Hmax is calculated. Hmax is determined by 
only the maximum difference in firing rate, compared to 
Hmean which gives the average difference in firing rate 
over the whole loop. Hence, Hmax is more susceptible 
to outlier firing rate differences over a cycle as it simply 
gives the largest relative firing rate difference. Hmean, 
on the other hand, is the mean relative firing rate differ-
ence over the pressure range and provides a more rep-
resentative measure of the hysteresis over all the cycles 
and seems to be less affected by large variability in firing 
rate over a cycle and from one cycle to the next (Fig. 2c). 
Hmean in general is lower if there is more variability in 
the amount of hysteresis across individual loops and if 
there is less hysteresis. Furthermore, if both Hmax and 
Hmean are large and the ratio of Hmax/Hmean is close 
to 1, this in general reflects more hysteresis in the system 
and larger, more uniform loops. Higher ratios of Hmax/
Hmean indicate more peculiar loops [32] and more vari-
ability in the loops between cycles.

Several factors may have contributed to variability in 
hysteresis loops (e.g. Fig. 2c ii) beyond natural irregular 
action potential firing, including inconsistencies in spike 
isolation and sorting and the firing rate calculation. We 
sought to minimize these sources of variability through 
several approaches. We utilized consistent unit thresh-
olding and a fixed cutoff for determining bladder units 
(correlation coefficient  ≥  0.2). All sorted bladder units 
were manually verified by the same person. We also per-
formed a preliminary hysteresis analysis comparing dif-
ferent firing rate calculations. We did not see a difference 
in computed hysteresis values between different meth-
ods (Fig. 8), and proceeded with a consistent firing rate 
calculation. Nevertheless, we cannot rule out potential 
contributions of these and other sources of error in the 
calculated hysteresis values. Still bladder afferent units 
had higher Hmax and Hmean values (on average across 
both data sets higher than 0.7 and 0.4, respectively), par-
ticularly when compared to non-bladder units which 
generally had a very small Hmean (close to 0).

We applied the same equations for calculating Hmax 
and Hmean to neural activity-bladder pressure (or ten-
sion) plots in published literature (Table 1). The range of 
Hmax and Hmean values from those plots were compa-
rable to those values calculated from our data (Figs. 4, 5, 
and 6). Note that the data in Table 1 was collected from a 
variety of animal models (cat, pig, and rat), fill rates, and 
signal sources (dorsal root ganglia and pelvic nerves). An 
advantage of the hysteresis calculation method used in 
this study is that it does not depend on the actual units of 
the input–output signals. Further testing could be done 
to rigorously compare effects of different types of signals 
and/or signal sources and different fill rates (for example, 
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comparing rapid injection of fluid versus more physiolog-
ical fill rates).

Though our results were generally consistent, there was 
variability in the data sets. Some slow fill trials had many 

contractions (up to 16) whereas others had only 3 con-
tractions. Thus we chose a set number of contractions per 
volume range. In addition, not all volume ranges within a 
fill cycle met our criteria for contraction count and size. 
Therefore, all volume ranges were not represented in all 
trials and animals. Some animals also had more bladder 
units than others. Another limitation of this study was 
the small sample size for the isovolumetric data (only 2 
animals), though the results did overlap with the values 
from the slow fill trials. Another potential confounding 
effect was the difference in the infused saline temperature 
for experiment 5 compared to the other experiments. In 
experiment 5, saline was infused into the bladder at body 
temperature compared to room temperature for the 
other experiments. Room temperature saline infusion is 
a standard procedure in bladder studies [6, 14]; however, 
functional differences can occur depending on the tem-
perature of the saline [36]. We did see a higher average 
Hmean value for the “warmer” infusion compared to 3 
out of the other 4 “cooler” infusions which may be due to 
this difference in temperature, though there was no dif-
ference observed for Hmax.

The origins of the pressure-firing rate hysteresis could 
be both myogenic and neurogenic. This may be due to 
the intrinsic mechanical properties of the bladder [37]. 
The bladder wall consists of smooth muscle, elastin, and 
collagen and has non-linear elastic, viscous, and plas-
tic properties [38, 39]. With repeated filling and empty-
ing of the bladder, length-tension curves of the bladder 
produces characteristic hysteresis loops [40]. Even in the 
absence of neural innervation, outside of the body, the 
bladder muscle displays this hysteretic property, further 
demonstrating that hysteresis is inherent in the muscle. 
Subjecting bladder muscle strips to sequential stretch-
ing and relaxing resulted in shifts of the tension-time 
and length-tension curves in a manner typical for materi-
als with hysteresis [41]. This non-linear behavior is also 
demonstrated in stress–strain curves after cyclic loading 
of the bladder muscle [38, 42].

This hysteretic relationship may not only be explained 
by myogenic factors. Neuronal mechanisms may also 
play a role, though the particulars of this are not clear. 
Hysteresis could result from the membrane properties 
of the afferent fibers themselves and the mechanosensi-
tive receptors. The primary mechanosensitive receptor in 
the bladder is thought to be the transient receptor poten-
tial vanilloid 4 (TRPV4) channel [43]. It is not known if 
the TRPV4 receptors demonstrates hysteresis, though 
another family member, the TRPV3, a temperature-
sensitive receptor [44], has been shown to demonstrate 
hysteresis. Furthermore, other mechanosensory systems 
such as muscle spindles and joint receptors in cats have 
been reported to demonstrate hysteresis [21, 45]. Many 
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mechanoreceptors have also been reported to show adap-
tation with decreases in frequency and/or amplitude with 
increasing input stimuli which may be attributed to the 
viscoelastic nature of the receptors [46] and some blad-
der afferent responses may also demonstrate adaptation 
[47]. However, more detailed studies would be required 
to confirm neurogenic causes of this non-linear behavior 
or if it was solely due to the biomechanics of the muscle 
itself, which is beyond the scope of this study.

The rate of bladder filling has been reported to affect 
the bladder’s intrinsic mechanical properties, with plas-
tic behavior dominating during natural fill rates and vis-
cous forces coming into play during rapid filling. Bladder 
compliance also decreases with increasing fill rates [48]. 
We infused saline at a near-physiological rate, in the 
medium–high range [31], so both plastic and viscous 
forces likely contributed to our results. Additionally affer-
ent activity has been reported to be lower for a given 
pressure at higher fill rates (compared to more natural 
fill rates) [9]. Even though this may have occurred, the 
hysteretic relationship is still evident and the amount of 
hysteresis we see is comparable to values calculated from 
previous studies. Those studies used different fill rates 

and one of them, specifically looked at tension versus 
afferent activity (Table 1), whose relationship is reported 
to be independent of fill rates [9]. Ultimately, our goal is 
to develop a real-time closed-loop neuroprosthesis to 
determine bladder pressure from neural activity; hence, 
we are focusing on relationship between bladder pressure 
and bladder afferent activity.

Given the hysteretic relationship between bladder 
afferent activity and bladder pressure, a simple linear 
equation does not adequately describe the relationship 
between these two. There are closed-loop bladder con-
trol approaches that do not take into account hysteresis, 
which have demonstrated minimal success so far. For 
example, some studies have focused on estimated bladder 
volume instead of pressure [49–51], though pressure may 
be a more reliable estimator than volume [52]. Another 
study has shown a proof of concept closed-loop model 
using direct pressure monitoring as the feedback signal 
[53], but this requires a reliable way to directly measure 
bladder pressure that comes with its own challenges [54]. 
A closed-loop model for bladder control that takes into 
account hysteresis may result in a more realistic estima-
tion of bladder pressure from afferent activity than using a 
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simple linear regression model [23]. One approach could 
be using piecewise polynomials to model tonic increase in 
bladder pressure and contractions, and to use estimated 
hysteresis to adjust for the changing pressure-firing rate 
relationship on the rising and falling edges of contrac-
tions. Another method could be incorporating derivatives 
to model the hysteresis loop, similar to models proposed 
for dynamic hysteresis loops [55]. As we did not see differ-
ences in hysteresis values across different volume ranges, 
one hysteretic value may be applicable at different blad-
der volumes. Further experiments and algorithm devel-
opment are needed to determine an optimal approach, 
which will also need to account for the effects of move-
ment that will occur in a behaving implant recipient.

Conclusions
We did a quantitative assessment of the hysteretic rela-
tionship between bladder pressure and afferent activ-
ity, which has been previously commented on but not 
described quantitatively. The amount of hysteresis is 
similar across slow fill and isovolumetric trials and at dif-
ferent volumes and is comparable to values we calculated 

from published examples. These results provide more 
information on the relationship between bladder pres-
sure and afferent activity and could be utilized in a 
closed-loop model for a bladder neuroprosthesis.
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Table 1  Quantification of hysteresis from bladder pressure/tension-bladder afferent plots in published literature

NR not reported

Hmax and Hmean values are average values (across multiple loops per unit) for Ref. [16] and [23]
#   Firing rate versus tension on bladder surface, not pressure
++   The hysteresis relationship was opposite in direction than normal

References Figure # and  
trace #

Animal 
model

Neural source and  
signal type

Bladder  
volume

Test state Hmax Hmean

Bruns [23] 5—unit 3
ρ: 0.71

Cat S1 and S2 DRG 20 ml None, bladder at isovolu-
metric state

0.65 0.43

5—unit 4
ρ: 0.68

Cat S1 and S2 DRG 20 ml None, bladder at isovolu-
metric state

0.87 0.71

Downie [8]# 7A++ Cat Pelvic nerve filament NR Distension/withdrawal 
cycles under volume-
step conditions

0.57 0.25

7D Cat Pelvic nerve filament NR Distension/withdrawal 
cycles under pressure-
step conditions

0.48 0.20

Jezernik et al. [35] 7—1st cycle Pig Pelvic ENG Empty 60 ml bolus injection/
withdrawal at 116 ml/
min fill rate

0.52 0.34

7—2nd cycle Pig Pelvic ENG Empty 60 ml bolus injection/
withdrawal at 133 ml/
min fill rate

0.77 0.49

Winter et al. [16] 2—unit 1 Cat Detrusor afferent Up to 10 ml 5 ml bolus injection/ 
withdrawal

0.72 0.31

2—unit 2 Cat Detrusor afferent Up to 10 ml 5 ml bolus injection/ 
withdrawal

0.71 0.35

2—unit 3 Cat Detrusor afferent Up to 10 ml 5 ml bolus injection/ 
withdrawal

0.60 0.35

2—unit 4 Cat Detrusor afferent Up to 10 ml 5 ml bolus injection/ 
withdrawal

0.68 0.40
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