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Abstract 

Background:  Various strategies have been used for inferring brain functions from stroke lesions. We explored a new 
mathematical approach based on game theory, the so-called multi-perturbation Shapley value analysis (MSA), to assess 
causal function localizations and interactions from multiple perturbation data. We applied MSA to a dataset composed 
of lesion patterns of 148 acute stroke patients and their National Institutes of Health Stroke Scale (NIHSS) scores, to sys-
tematically investigate the influence of different parameter settings on the outcomes of the approach. Specifically, we 
investigated aspects of MSA methodology including the choice of the predictor algorithm (typology and kernel func-
tions), training dataset (original versus binary), as well as the influence of lesion thresholds. We assessed the suitability of 
MSA for processing real clinical lesion data and established the central parameters for this analysis.

Results:  We derived general recommendations for the analysis of clinical datasets by MSA and showed that, for the 
studied dataset, the best approach was to use a linear-kernel support vector machine predictor, trained with a binary 
training dataset, where the binarization was implemented through a median threshold of lesion size for each region. 
We demonstrated that the results obtained with different MSA variants lead to almost identical results as the basic 
MSA.

Conclusions:  MSA is a feasible approach for the multivariate lesion analysis of clinical stroke data. Informed choices 
need to be made to set parameters that may affect the analysis outcome.

Keywords:  Brain lesions, Multi-perturbation Shapley value analysis (MSA), Game theory, Lesion inference, Functional 
prediction
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Background
Lesion analysis reveals causal contributions of brain 
regions to mental functions, aiding the understanding 
of normal brain function and rehabilitation of brain-
damaged patients. Historically, brain lesions were one of 
the few available sources of information by which func-
tions of the human brain could be inferred. Although 
lesion inferences have made an enormous contribution to 
understanding the human brain and have laid the basis 
for attributing mental functions to specific brain regions 

[e.g. 1], they also have several drawbacks, such as the dif-
ficulty to infer function on the basis of the behavior of 
individual patients, the principal assumption of the local-
ization of function, as well as the plasticity of the injured 
brain [2]. Today, a broad range of additional techniques 
exist to investigate the functions of the living brain 
through the correlation of behavior and cognition with 
brain activity, as shown by electrophysiology and func-
tional imaging. In this context, lesion inferences, which 
link behavioral functions directly and causally to a neural 
substrate, still have an important role in modern neuro-
science [2].

Despite the exciting promise of lesion inferences for 
identifying causal functional contributions, they are lim-
ited by several conceptual difficulties. Young et  al. [3] 
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discussed the potential unreliability of classical inference 
methods, such as single and double dissociations. In a 
single dissociation, a lesion of brain structure a disrupts 
function A but not function B; suggesting that functions 
A and B have some independence. Double dissociations 
arise when function A is disturbed by lesion of a and not 
of region b, while function B is disturbed by lesioning b 
and not a. This observation also leads to the conclusion 
of independent functions A and B, and their attribution 
to lesioned regions a and b, respectively [4]. The princi-
pal problem of single dissociations is the impossibility 
to assess if an apparently specific deficit arises from the 
impairment of a specific, localized process or from more 
general lesion impairment. In fact, a behavioral deficit 
after a lesion could be evidence for an interdependent 
hierarchy of functions in which the lesioned region plays 
a contributing role, rather than evidence for a localization 
of the function. Although double dissociations appear to 
represent a conceptual improvement over single disso-
ciations in correctly ascribing functions to brain regions, 
they can also result in incorrect conclusions. Striking 
examples in this respect are so-called paradoxical lesion 
effects, such as the reversal of visual hemineglect during 
bilateral cortical or collicular inactivation in the cat brain 
[5]. An extensive variety of paradoxical lesion effects has 
been documented [6, 7], including two major types of 
paradoxical functional facilitation (PFF): restorative PFF 
and enhancing PFF. Restorative PFF arises when dam-
age to intact brain tissue returns a previously sub-normal 
level of functioning back to normal. One example is the 
Sprague effect [8], where superior collicular lesions can 
result in a (partial) restoration of visual functioning fol-
lowing an initial visual cortical lesion of the contralateral 
hemisphere. By contrast, an enhancing PFF occurs when 
a subject with apparent nervous system pathology or sen-
sory loss performs better than healthy control subjects on 
a particular task. These paradoxical effects arise because 
the brain is not just a collection of independent func-
tional processors, but a complex system in which brain 
function emerges from the multiple interactions of dis-
tributed yet interlinked brain regions. Therefore, the con-
ceptual problems linked to single or double dissociations 
also extend to higher-order inferences (e.g., triple disso-
ciation), and it becomes apparent that, in a strict sense, 
the true causal contributions of brain regions to behavior 
can only be correctly inferred from evaluating all combi-
nations of intact and injured brain regions together with 
their behavioral scores.

In this context, a number of traditional strategies 
as well as current approaches for lesion inference, all 
computed on a voxel-by-voxel basis, were reviewed 
by Rorden and Karnath [2]; such as voxel-based mor-
phometry (VBM) [9, 10], BrainVox [11], voxel-based 

lesion-symptom mapping (VLSM) [12], and voxel-based 
analysis of lesions (VAL) [13]. Kinkingnéhun et  al. [14] 
introduced a method called anatomo-clinical overlap-
ping maps (AnaCOM) which uses, in contrast to tradi-
tion statistical approaches for voxel-wise lesion behavior 
mapping (LBM, [15]), neurologically healthy individuals 
as control population instead of data from neurological 
patients [14, 15]. All statistical approaches mentioned 
above have, as a main drawback, the need to control 
for false positives [16]. Recently, Smith et  al. [17] intro-
duced a new approach, called multivariate pattern analy-
sis (MVPA), to predict the presence or absence of spatial 
neglect from brain injury maps. Specifically, the authors 
used two machine-learning techniques, based on linear 
and nonlinear support vector machines (SVMs), to clas-
sify individuals based on structural brain scans with right 
hemisphere lesions. A recent study of ischemic stroke 
patients by Forkert et  al. [18] demonstrated that infor-
mation about stroke location (specifically, lesion overlap 
measurements) can improve the prediction of functional 
outcome (as measured by the modified Rankin Scale) by 
multiclass SVMs.

Principally, lesion inference approaches can be clas-
sified on the basis of the univariate or multivariate 
nature of the used method. Multivariate analysis meth-
ods account for inherent dependencies among regions 
of interest. Such dependencies may lead to substantial 
mis-inferences of univariate analysis methods, as dem-
onstrated by Mah et al. [19] through ground-truth lesion 
simulations. The majority of lesion mapping approaches 
to date has applied univariate regression models [20]. 
Multivariate approaches based on machine learning, such 
as MVPA, were introduced to lesion analyses by the work 
of Smith et al. [17]. Similarly, Zhang et al. [21] developed 
a multivariate lesion symptom mapping approach using 
a machine learning-based multivariate regression algo-
rithm. The authors showed that, in comparison with 
VLSM, the new approach has higher sensitivity for iden-
tifying the lesion-behavior relations, both on synthetic 
and real datasets. A recent study by Corbetta et al. [22] 
proposed a multivariate approach based on machine 
learning to examine lesion-behavior relationships across 
multiple domains in a large sample of patients.

In contrast to these approaches founded on machine 
learning, multi-perturbation Shapley value analysis 
(MSA) [23] has been suggested as an alternative inference 
approach based on game theory [24]. MSA represents a 
mathematical method to assess causal function localiza-
tion from multiple perturbation data. It considers brain 
regions as network elements or players that interact in 
a game to achieve a particular behavior. The MSA com-
putes the contributions of these elements and also their 
interactions from a dataset of multiple lesions. The MSA 
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approach has been applied to neuroscience [25, 26], bio-
chemistry, and genetics [27, 28]. In the context of clini-
cal lesion analysis, Kaufman et  al. [29] applied MSA to 
lesion data and line bisection test scores of 23 right hemi-
sphere stroke patients. The study focused on 11 grey and 
white matter regions and used a predictor (specifically, 
a k-nearest neighbor algorithm) trained on the patient 
injury data to obtain the line bisection performance for 
all injury configurations. The approach revealed that 
among the 11 regions of interest, only four (the supra-
marginal and angular gyri of the inferior parietal lobule, 
the superior parietal lobule, the anterior part of the tem-
poro-parietal junction, and the thalamus) had a pivotal 
contributing role for the given task. While this proof-
of-principle paper demonstrated the practical applica-
bility of MSA to clinical image data, it was based on a 
small sample of 23 cases and low-resolution CT images. 
In a recent paper by our group [24], we applied the MSA 
approach, in comparison with other lesion inference 
methods, to a large multi-centre dataset of stroke patient 
data, to investigate functional contributions of eight 
large-scale bilateral volumes of interest (VOIs). The data-
set comprised lesion patterns of 148 acute stroke patients 
together with their neurological deficits, assessed by the 
National Institutes of Health Stroke Scale (NIHSS, [30]). 
The analysis, which revealed contributions to essential 
behavioral and cognitive functions particularly by sub-
cortical structures, contributed to the interpretation of 
NIHSS in clinical practice as well as clinical trials.

MSA is a novel computational method, which has 
not yet been explored in sufficient detail from a techni-
cal perspective for the application to stroke lesion infer-
ence. In the present study, we applied MSA to the same 
large sample of patient lesion data used previously [24], 
to investigate open methodological and technical aspects 
of the MSA approach in lesion inference and systemati-
cally determine the influence of different parameter set-
tings on the results of this approach. More precisely, the 
main goals of this study were to, first, compute a sensitiv-
ity analysis on the parameters characterizing the prepa-
ration of the dataset for MSA, that is, lesion definition 
and lesion prediction, second, identify the most impor-
tant parameters for this analysis, third, investigate MSA 
methodological variants and, finally, assess the suitability 
of MSA for processing real clinical lesion data.

Methods
Behavioral and lesion image data
For the present study, we used a large multi-centre data-
set of stroke patients, described in a recent paper by our 
group [24]. The used data comprise a population of acute 
stroke patients included in a multi-centre observational 
study, designed to analyze the combined use of FLAIR 

(fluid attenuated inversion recovery MR imaging) and 
DWI (diffusion-weighted MR imaging) for identifying 
patients with acute ischemic stroke within 4.5 h of symp-
tom onset (the PRE-FLAIR study [31, 32]). All patients in 
this study were studied within 12  h of witnessed stroke 
onset and severity of neurologic deficit on admission was 
assessed using the global NIHSS. The NIHSS, which is 
a rating scale resulting from a standardized neurologi-
cal examination, quantifies symptom severity in acute 
stroke [30] by scoring 11 items representing specific abili-
ties, with scores ranging between 0 (no symptoms, cor-
rect performance of task) and 2–4 (maximum symptom 
severity for corresponding item). These items include 
the: Level of Consciousness, Horizontal Eye Movement, 
Visual field, Facial Palsy, Motor Arm, Motor Leg, Limb 
Ataxia, Sensory, Language (Aphasia), Dysarthria, Extinc-
tion and Inattention. Higher NIHSS scores indicate a 
more severe impairment. A global score is calculated by 
summing up the individual score values. Details of imag-
ing parameters and clinical characteristics for this study 
cohort were described previously [24].

Lesion image processing
For quantitative lesion analysis, the same processing 
pipeline was used as described in [24]. Briefly, the lesions 
were segmented in each DWI dataset using a semi-
automatic intensity-based method. After lesion defini-
tion, the 152 MNI brain atlas [33] was registered to each 
DWI dataset using a surface-based registration method. 
The resulting transformation was then used to transform 
the corresponding MNI atlas brain regions to each DWI 
dataset, which were then used for lesion overlap quanti-
fication (in %). The study focused on eight bilateral VOIs, 
defined by the MNI structural atlas: caudate (CAU), 
insula (IN), frontal (FR), occipital (OCC), parietal (PAR) 
and temporal lobes (TEM), as well as putamen (PUT), 
and thalamus (TH), which covered the whole brain. The 
overlap (in %) between each of the transformed 16 ana-
tomical structural regions as defined in the MNI struc-
tural atlas and the patient-specific acute ischemic stroke 
lesion was calculated for each patient. The resulting data-
set was composed of 148 patient cases with different pat-
terns of lesioned VOIs (77 left-only, 72 right-only, one 
patient without lesions across all VOIs who was included 
in both hemisphere sets) and the corresponding global 
NIHSS values of the patients.

Preliminary analysis
As in Zavaglia et  al. [24], we first employed two simple 
approaches of lesion inference to assess the relative lesion 
size and frequency, using Lesion Overlap and Median 
VOI Lesion Overlap. The first method simply calculates 
the percentage of patients who display a lesion in each 



Page 4 of 15Zavaglia et al. BMC Neurosci  (2016) 17:40 

voxel of the MNI brain atlas (in %). The second method 
is similar to the first one, but is applied to VOIs instead 
of single voxels. This approach shows the median over-
lap between the 16 anatomical MNI brain atlas regions 
and the patient-specific acute ischemic stroke lesions. For 
further details see Zavaglia et al. [24].

Multi‑perturbation Shapley value analysis: general 
approach
As an alternative to traditional inference approaches, the 
MSA is a rigorous method for assessing causal function 
localization from multiple perturbation data. It addresses 
the challenge of defining and calculating the contribu-
tions of network elements from a dataset of multiple 
lesions (multiple perturbation experiments) and their 
performance scores. It objectively quantifies not only the 
contributions of network elements, but also their inter-
actions. MSA is based on coalitional game theory [34]. 
In general, the linked system elements (in this study, the 
volumes of interest) can be seen as players in a game, and 
a perturbation configuration represents a subset of ele-
ments, which are perturbed concomitantly. The set of 
elements, which are left intact, represents the coalition 
of players. For each configuration, the performance of 
the system (here, the inverse of the NIHSS), which can be 
seen as the worth of the coalition, is measured. The aim 
of the analysis is to assign values that represent the ele-
ments’ contribution, or importance, for the overall func-
tion. The contribution of an element represents the worth 
of the coalition which contains the element, in relation to 
the worth of coalitions that do not contain it. The formal 
procedure is described below.

If we consider a system composed of N =  {1, … , n} 
elements that perform a task, we can define a coalition 
S, where S ⊆ N, and a performance score v(S), which is a 
real number representing the performance measured for 
the perturbation configuration in which all the elements 
in S are intact and the rest perturbed. The definite value 
in game theory and economics for this type of coalition 
game is the Shapley value [34]. The marginal importance 
of player i to a coalition S, with i ∉ S, is represented in 
Eq. 1

The Shapley value of each player i ∈  N is defined by 
Eq. 2 where R is the set of all n! orderings of N and Si(R) 
is the set of players preceding i in the ordering R. If we 
assume that all the players are arranged in some order, 
all orders being equally likely, the Shapley value can be 
interpreted as the marginal importance of a player i to 
the set of players that precede him. We define a configu-
ration to be an indicator vector for the set of unperturbed 
elements, that is a binary vector of length n, with ci = 1 if 

(1)�i(S) = v(S ∪ {i})− v(S)

i ∈ S or ci = 0 if i ∉ S. For a detailed, formal description of 
MSA see [23].

When all possible 2n perturbation configurations are 
known, the Shapley value can be computed either using 
Eq.  2 where the summation runs over all n! ordering of 
N, or it can be computed as a summation over all 2n con-
figurations, properly weighted by the number of possible 
ordering of the elements (Full Information MSA).

Multi‑perturbation Shapley value analysis: method 
variants
Predicted MSA
Frequently, the complete set of performance scores for 
all combinations of the binary states of a set of regions 
required for MSA is not available, due to the difficulty of 
experimentally accessing all perturbation configurations. 
In those cases, a prediction model trained on the avail-
able set of configurations and performance scores can be 
used to predict the performance scores corresponding to 
all binary configurations.

In this study, a total of 2n =  256 binary lesion config-
urations existed (where each VOI can be lesioned, “0”, 
or intact, “1”, and n = 8 is the number of VOIs for each 
hemisphere) and correspondingly, 256 performance 
scores were required for the MSA (see “Multi-perturba-
tion Shapley value analysis: general approach” section). 
However, the original input dataset used in this work 
was composed of only 77 graded lesion configurations 
(describing % lesion overlap) and corresponding perfor-
mance scores for the eight left VOIs and 72 graded lesion 
configurations and corresponding performance scores 
for the eight right VOIs. Therefore, we used a machine 
learning model trained on the available input dataset (see 
“Multi-perturbation Shapley value analysis: prediction 
of unknown performance scores” section for details) to 
predict the performance scores of all possible 2n =  256 
binary lesion configurations. After the prediction, all per-
formance scores corresponding to the required 2n binary 
configurations for each hemisphere were available, and it 
was possible to compute the Shapley value with the full 
information MSA (predicted MSA).

Estimated MSA
In studies where the number of system elements is too 
large to enumerate all configurations in a straightforward 
manner, the MSA can alternatively sample orderings and 
calculate an unbiased estimator of the contribution of 
each element (estimated MSA) as shown in Eq. 3, where 
R̂ represents a randomly sampled set of permutations.

(2)γi(N , v) =
1

n!

∑

R∈R

�i(Si(R))
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It is important to note that a perturbation configura-
tion may appear in different permutations. Therefore, 
the number of new configurations (and correspond-
ing performance scores) for each sampled permutation 
decreases as more permutations are sampled [26]. The 
multi-perturbation configurations that are used in the 
estimated Shapley value method depend on the sampled 
orderings. However, the available dataset of performance 
measures for some set of perturbation configurations 
does not necessarily match the ones corresponding to a 
random permutation-configuration sample. In this case, 
as for the predicted MSA, a prediction model is trained 
using the available given set of perturbation configura-
tions and corresponding performance scores and it is 
used to predict the performances for any perturbation 
configuration generated by the sampled permutations 
(estimated MSA). In studies where the number of VOIs 
(n) is relatively small, there is no considerable advan-
tage in using the estimated MSA, but where the number 
of VOIs is much larger, its use becomes fundamental, 
because the number of configurations and correspond-
ing performance scores generated by the sampled per-
mutations is much smaller than 2n. The estimated MSA 
approach is suitable for large networks consisting of up to 
100 network elements [26].

Multi‑perturbation Shapley value analysis: prediction 
of unknown performance scores
Choice of machine learning predictor
There is no pre-specified prediction model for MSA, and 
it is an important task to select the best-suited algorithm 
for predicting unknown performance scores on the basis 
of the specific configuration of available performance val-
ues. This aspect is important, because it may affect the 
results of the subsequent MSA analysis. Among a large 
number of available classifiers, one can consider, for 
example, naive Bayes classifiers, regression trees, nearest 
neighbor algorithms, random forests, and support vector 
machines (SVM).

The k-nearest neighbor (k-NN) approach has been used 
before for a similar purpose by Kaufman et al. [29], who 
applied it in their MSA study on spatial neglect patients. 
The k-NN method is a relatively simple interpolation 
algorithm in which an object is assigned a value based 
on the classes (i.e., functional performance score) of its 
k nearest neighbors, for instance, based on Euclidean 
distance. Alternatively, support vector machines have 
been found to be very powerful, especially in case of non-
linear classification problems. Support vector machines 

(3)

γ̂i(N , v) =
1

∣

∣

∣
R̂

∣

∣

∣

∑

R∈R̂

�i(Si(R))
can be applied to classification or regression problems 
[35]. Specifically, a supervised learning algorithm infers a 
function from labeled training data consisting of a set of 
training examples. The inferred function can be used for 
mapping new examples; that is, the algorithm can deter-
mine the class labels for unseen instances. In the present 
approach, we predicted performance scores space using 
the multiclass SVM (where the number of categories is 
larger than two) implemented in LIBSVM [36]. A sensi-
tivity analysis on the settings of the SVM (i.e., its kernel 
function) was performed to select the best-suited param-
eters for our dataset.

Original‑graded versus thresholded‑binary dataset
Two options were investigated to predict the perfor-
mance of the 256 binary configurations, using either the 
original-graded dataset or alternatively a thresholded-
binary dataset (where “0” is lesioned and “1” is intact, 
created from the graded dataset after thresholding) as 
training dataset. Both strategies have their inherent 
advantages and drawbacks. On the one hand, using the 
original-graded dataset utilizes the information of the 
original data in the training without information loss due 
to binarization. However, the training and test data do 
not have the same features, since the predictor is trained 
with graded data and then tested with binary data (256 
binary lesion configurations required by the MSA). On 
the other hand, using a binary dataset (after thresholding) 
for training, the type of training and test data is identical, 
at the cost of major drawbacks: the necessary choice of an 
arbitrary threshold for the binarization, and the conse-
quent loss of information. Particularly, after binarization, 
the number of unique configurations changes, because 
some graded configurations become equal to each other 
at a binary level, but have different associated behavioral 
scores and also different graded lesion patterns.

The binarization threshold may be global, that is, 
using a unique value for all VOIs, or individual, that 
is, computed individually for each VOI. In our study, 
we explored both approaches. As a first alternative, we 
binarized the original-graded dataset at different global 
thresholds by defining each VOI as lesioned (“0”) or 
intact (“1”) depending on whether relative lesion size was 
larger or smaller than a given global threshold. Using a 
leave-one-out cross validation scheme, we trained the 
SVM respectively with the original-graded dataset graded 
from 0 to 1, where “0” represents a complete lesion and 
“1” a completely intact region (since the original overlap 
values are defined opposite we had to calculate values as 
1—original-graded dataset), and with the correspond-
ing thresholded-binary dataset at different thresholds. 
Each SVM model was evaluated with leave-one-out cross 
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validation, using the thresholded-binary dataset obtained 
with different thresholds. In this way, for each binariza-
tion threshold and for both types of training dataset 
(original-graded or thresholded-binary), we computed 
the root mean squared error (RMSE) in terms of the dif-
ference between the real and the predicted performance 
score. We focused on the SVM variants with the lowest 
RMSE for both types of training. In turn, the same analy-
sis was repeated for three individual thresholds, com-
puted respectively as the first (0.25), second (0.5, median 
threshold) and third (0.75) quartile of the non-zero rela-
tive lesion size individually for each (individual) VOI. For 
the individual thresholds, we also computed a measure of 
accuracy. Specifically, we considered the prediction suc-
cessful when the absolute value of the difference between 
the predicted and the real performance score was not 
larger than a maximum tolerance error (=3).

Results
Lesion definition
Lesion size and NIHSS
Figure 1 represents the relative lesion size and the asso-
ciated global NIHSS together with color bars indicating 
the range of variation in lesion size and NIHSS, respec-
tively. The NIHSS is graded from 0 to 21, where zero 
means that the patient shows no behavioral deficit and a 
score of 21 indicates the severest impairment (the range 
is given for the current sample; higher NIHSS scores are 
possible). The figure demonstrates the segregation into 
left- and right-hemispheric lesions and the correlation 
of lesion size with NIHSS. Large structures, such as the 
cortical lobes, typically only have small relative lesions, 
while relative lesion sizes are larger for small (subcorti-
cal) structures.

Lesion overlap and median VOI lesion overlap
Figure 2 shows the outcomes of the preliminary analysis 
approaches described in “Preliminary analysis” section, 
applied to the left and right lesions dataset separately and 
represented in the reference space of the MNI atlas (top 
row). The first, simple and straightforward assessment of 
the data is by the relative Lesion Overlap, shown in the 
second row on the MNI brain atlas (using neurologi-
cal convention). This representation shows that all VOIs 
involved in the study are damaged to different extent. 
Due to these overlapping lesion patterns, it is difficult 
to establish a simple relationship between the lesions 
and the behavioral scores (NIHSS). As a second method 
to visualize the lesioned regions, we used Median VOI 
Lesion Overlap, Fig.  2, third row, showing the relative 
(percentage) infarction computed individually for each 
VOI. This method clearly indicates that, on a relative 
scale, the subcortical regions are most affected, especially 
in the right hemisphere. In Fig. 3 for each VOI in the left 
and right hemisphere, we also plotted the relative per-
centage of lesioned voxels for all patients with the corre-
sponding median VOI infarction.

Lesion prediction
Original‑graded versus thresholded‑binary dataset 
and linear‑ versus RBF‑kernel SVM: global threshold 
of binarization
In order to assess the drawbacks and advantages of the 
two types of training sets, we present both prediction 
options with the corresponding results. In Fig. 4, we show 
the changes of RMSEs for left and right VOIs separately, 
obtained with thresholded-binary and original-graded 
training for two SVM classifiers, depending on the global 
threshold of binarization. Specifically we used a linear 
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Fig. 1  Percentage of lesioned voxels in 16 VOIs, and associated global NIHSS values for 148 patients. The color scales indicate the range of lesioned 
voxels (graded from 0 to 100%) and the range of NIHSS values (graded from 0 to 21)
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kernel (kernel type t =  0) SVM, with parameters set to 
default value (SVM type s = 0, cost c = 1), and a radial 
basis function (RBF) kernel (kernel type t =  2), with all 
parameters set to default value except for the gamma 
parameter (SVM type s = 0, cost c = 1, gamma g = 1). 
In panel e and f of Fig. 4, the number of unique config-
urations after the binarization process is illustrated. It 
becomes apparent that it is not straightforward to select a 
global threshold of binarization that gives the best results 
for both types of trainings, particularly because it is not 
sufficient to consider the RMSE, as also the numbers of 
unique (useful) configurations after binarization have to 
be taken into account (as anticipated in “Original-graded 
versus thresholded-binary dataset” section). A thresh-
old of 50  %, for example, yields a good RMSE, but, at 
the same time, only 4 and 6 unique configurations are 
available for the left and right hemisphere, respectively, 
since at this threshold, only bilateral putamen and insula 
have lesioned elements. In this context, an area-specific 

threshold for binarization, specifically and separately tai-
lored for each VOI despite the variation in relative lesion 
size, could represent a good alternative.

Original‑graded versus thresholded‑binary dataset: 
individual threshold of binarization
Table  1 shows the results on the RMSE and accuracy 
(maximum tolerance error  =  3) computed with indi-
vidual thresholds, for left- and right-damaged patients 
datasets respectively, with both types of training and 
with the linear-kernel SVM (for brevity, we did not 
report the results of the RBF-kernel SVM). The median 
value threshold represents a good compromise between 
RMSE and accuracy, for both graded and binary train-
ing, as well as the number of useful configurations. 
Moreover, the classification accuracies obtained with the 
median threshold are considerably higher than the sta-
tistical chance levels, which were computed in the same 
way as prediction accuracy (maximum tolerance error 
±3), but instead of the predicted scores we used NIHSS 

Fig. 2  Illustration of MNI atlas (by three representative slices of the 
MNI atlas covering all structural regions), lesion overlap and Median 
VOI lesion overlap, in neurological convention. While the lesion over-
lap focuses at the scale of voxels, Median VOI lesion overlap shows 
the relative (median percentage) infarction within the confines of the 
predefined 2 × 8 VOIs. The color map is the same for all measures, but 
at different scales. See also [24]

a

b

Fig. 3  Percentage of lesioned voxels (grey) and median values (black) 
for each VOI in the left (a) and right (b) hemispheres respectively
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a b

c d

e f

Fig. 4  RMSE functions for SVM linear kernel (a, b) and SVM radial basis function (RBF) kernel (c, d) for both left and right hemispheres, depending 
on the global thresholds. Numbers of unique configurations for left and right damaged patients, depending on the global-threshold (e, f). The 
RMSE functions for the binary training are represented in black, and for the original training in dashed grey. The values of the RMSEs computed with 
the median-threshold binarization are reported here for comparison (Left SVM linear kernel: original-graded training RMSE = 5.5561, thresholded-
binary training RMSE = 5.6454; SVM RBF kernel: original-graded training RMSE = 5.344, thresholded-binary training RMSE = 5.9467. Right SVM 
linear kernel: original-graded training RMSE = 5.3307, thresholded-binary training RMSE = 5.9663; SVM RBF kernel: original-graded training 
RMSE = 5.1841, thresholded-binary training RMSE = 5.8949)

Table 1  RMSE and accuracy (%) for SVM linear kernel prediction for both left and right hemispheres, computed with both 
original-graded and thresholded-binary training

The individual thresholds used for the binarization are the first (0.25), second (0.5, median) and third (0.75) quartile of the non zero relative lesion size for each VOI

RMSE-accuracy (%) Original training Binary training Number of useful con‑
figurations

Left Right Left Right Left Right

First quartile 6.1–57 5.3–51 6.7–32 6.4–48 42 42

Median 5.6–57 5.3–52 5.6–54 6.0–53 37 40

Third quartile 5.6–59 5.4–54 5.5–54 5.5–57 21 24
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values that were randomly permutated for all patients. 
We repeated this procedure 100 times and obtained a 
mean chance level accuracy of 36 % for left regions and 
34 % for right regions.

Training of the SVM using the original-graded val-
ues instead of the thresholded-binary values intuitively 
promises a better prediction, due to making fuller use of 
the continuously defined variables. Indeed, RMSE and 
accuracy for graded training were slightly better than for 
binary training. However, this procedure incurs the prob-
lem that the training data and the predicted data are of 
different types (graded versus binary lesions), which leads 
to biases in the prediction. Specifically, the prediction of 
NIHSS based on graded lesion patterns led to a discon-
tinuous spread of predicted values (cf. Fig.  7 as well as 
Figs. 5 and 6). While the RMSE and accuracy measures 
suggested that these values were within a useful range, 
the apparent artificial distribution of the values indicated 
a prediction bias. For this reason, for subsequent analyses 
we preferentially used a thresholded-binary dataset for 
the training of a linear-kernel SVM, where the binariza-
tion was implemented through a median threshold for 
each VOI. Figure 7 shows predicted performance scores 
obtained with thresholded-binary and original-graded 
training. Specifically, we represent the 256 binary config-
urations required for the MSA [sorted from all lesioned 
(blue = 0) to all intact (red = 1)], with the corresponding 
mean value of the performance scores. The performance 
scores were predicted with the linear-kernel SVM, for left 
and right VOIs, based on both thresholded-binary and 
original-graded dataset training and the leave-one-out 
cross validation. The color map range of predicted scores 
in the color bars is the same for panels (a) and (b). It is 
interesting to note that there is a substantial difference 
between left and right brain regions. For right regions, 
the predicted scores tend to vary in a smaller range com-
pared to left ones. This observation can be ascribed to 

the fact that the scores are based on a battery of functions 
mostly associated with the left hemisphere. Moreover, it 
is clear that the binary training, for both hemispheres, 
leads to a more even spread of predicted scores, while 
with the original-graded training, the predicted scores 
tend to exhibit only a few values of the possible global 
NIHSS range, and the correlation between the number of 
intact regions and the performance score is less evident.

MSA contributions
MSA: general consideration
In this section, we present the main results obtained 
with the MSA analysis applied separately to left and right 
VOIs. Specifically, we show the differences between con-
tribution values obtained with thresholded-binary and 
original-graded training, between SVM classifiers (radial 
basis function or linear kernel), and between MSA vari-
ants (predicted MSA and estimated MSA).

Predicted MSA: original‑graded versus thresholded‑binary 
dataset and linear‑ versus RBF‑kernel SVM
Here, we show the normalized mean MSA contribu-
tion values for the inverse NIHSS, using the linear and 
the RBF-kernel SVM, with thresholded-binary and 
original-graded training datasets, to compute unknown 
performance scores (predicted MSA). As left- and 
right-hemispheric lesions were strictly separated in 
the present patient sample, contributions of VOIs were 
computed separately for the left and right hemisphere. 
Standard deviation bars are derived from the leave-
one-out cross validation during the prediction of per-
formance scores. Specifically, we predicted the 256 
unknown scores 77 times (for left-brain VOIs) and 72 
times (for right-brain VOIs) and consequently computed 
the same number of MSA contribution values. Posi-
tive contribution values indicate that regions contrib-
ute positively to the performance of a task. Thus, if they 

a b

−20 −15 −10 −5 0 5 10 15 −20 −15 −10 −5 0 5 10 15

- -

Fig. 5  Representation of the error for left brain damaged patients computed with the leave-one-out approach with original-graded training and 
binary testing (a) and with thresholded-binary training and binary testing (b). The binarization is made with the median individual-threshold
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are lesioned, the performance is lowered. By contrast, a 
negative contribution value means that the lesioning of 
these regions is beneficial for the performance of the 
task. We also show the normalized contribution values 
obtained with the estimated MSA, for the binary training 
and linear kernel SVM. In Fig. 8, we show the compari-
son between the contributions derived from the training 
with the original-graded and thresholded-binary data-
set using the linear kernel SVM, for left and right VOIs 
respectively. For the binary training, subcortical regions, 
such as caudate and left insula, together with parietal 
and frontal lobes, were inferred to make the strongest 
contributions to brain functions reflected by the NIHSS. 
Moreover, all contributions (except for the right tem-
poral lobe) were significantly different from zero, with 
negative contributions coming from right putamen and 
left thalamus (same results shown in [24]). Both for left 
and right VOIs, there were differences between the two 
training methods. For right VOIs the difference is more 
evident, especially for putamen and insula that seem to 
have a much stronger effect when the original-graded 
training is used.

In Fig. 9 we show the same quantities as Fig. 8, but gen-
erated using the radial basis function kernel SVM. The 
difference between the two training methods for the left 
VOIs is less evident than for right VOIs. Interestingly, the 
results obtained with the two SVM kernels do not differ 
considerably. We computed the rank correlation between 
the eight mean contribution values obtained with thres-
holded-binary training, with linear and RBF kernel: for 
left VOIs ρ =  0.42 (p-value =  0.30) and for right VOIs 
ρ =  0.55 (p-value =  0.17). We also computed the rank 
correlation between the eight mean contribution values 
obtained with original-graded training, with linear and 
RBF kernel: for left VOIs ρ = 0.17 (p-value = 0.7) and for 
right VOIs ρ = 0.78 (p-value = 0.03) .

Estimated MSA: thresholded‑binary dataset and linear‑kernel 
SVM
Figure  10 shows the contribution values obtained with 
the estimated MSA after simulations of 100 orderings 
of the set of multi-perturbation experiments. We used 
the linear kernel SVM with thresholded-binary training 
(individual median threshold) to predict the performance 
scores for all the perturbation configurations dictated 
by the sampled permutations. The output shows contri-
butions which are almost identical to the contributions 
obtained with the predicted MSA (rank correlation is 
ρ =  0.98 for left VOIs and ρ =  0.95 for right VOIs, see 
also black contributions in Fig. 8). Also, smaller numbers 
of orderings (i.e., 50) work quite well (results not shown). 
In this study, where the number of VOIs is relatively 
small, there is no big advantage in using the estimated 
MSA, but in studies where the number of VOIs is much 
larger, its use becomes essential (see “Estimated MSA” 
section).

Discussion
In this paper, we investigated in detail the MSA meth-
odology and showed its application to a large dataset 
of stroke patients. The dataset was used in a previous 
study by our group [24], but here we focused on clarify-
ing methodological and technical questions of the MSA 
approach in lesion inference and identifying the most 
important parameters for the analysis. In particular, we 
investigated parameters involved in the preparation of 
the dataset for MSA, such as the binarization threshold 
(global or individual) for the graded lesion dataset, the 
kernels of the predictor and the consequent best-suited 
training set for the prediction of unknown behavioral 
scores. We also investigated MSA methodological vari-
ants, such as the estimated MSA, that may be relevant for 
future studies involving more finely resolved ROIs.

a b

−15 −10 15 0 5 10 15 20 −15 −10 15 0 5 10 15 20

- -

Fig. 6  Representation of the error for right brain damaged patients computed with the leave-one-out technique with original-graded training and 
binary testing (a) and with thresholded-binary training and binary testing (b). The binarization is made with the median individual-threshold
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a

b

Fig. 7  256 binary state configurations required for the MSA, sorted from all-intact (red 1) to all-lesioned (blue 0) and corresponding mean predicted 
scores for left and right VOIs, obtained with thresholded-binary (a) and original-graded (b) training. The color map scale is the same for both panels
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Data conditioning, choice of training set and predictor
One of the main technical limitations of the classic MSA 
method is the preparation of a complete lesion dataset in 
binary format, consisting of functional scores for all pos-
sible configurations of intact and lesioned states of VOIs, 
as required by the algorithm. The full information MSA 
approach requires complete functional information for 

all 2n binary brain state configurations, where n is the 
number of regions. Thus, ideally, one would have avail-
able performance values for 2n patients, whose lesion pat-
terns are all different from each other. In clinical practice, 
this requirement is unrealistic. Even the present extensive 
study, which included 77 left- and 72 right-brain dam-
aged patients, did not reach the required number of 256 

a b

Fig. 8  Comparison between mean contribution values obtained with original-graded (grey) and thresholded-binary (black) training, for left and 
right VOIs respectively, with the linear kernel SVM. Rank correlation between the contribution values of the alternative approaches is ρ = −0.21 
(p-value = 0.62) in a and ρ = −0.05 (p-value = 0.93) in b

a b

Fig. 9  Comparison between mean contributions obtained with original-graded (grey) and thresholded-binary (black) training in left and right VOIs 
respectively, with the rbf kernel SVM. Rank correlation between the contribution values of the alternative approaches is ρ = 0.81 (p-value = 0.02) in 
a and ρ = 0.46 (p-value = 0.26) in b

a b

.
.
.
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Fig. 10  Normalized contribution values obtained with estimated MSA (100 orderings), computed with thresholded-binary training in left and 
right VOIs respectively, with the linear kernel SVM. Rank correlation between estimated MSA and predicted MSA (black bars in Fig. 8) is ρ = 0.98 
(p-value = 0.0004) for left VOIs and ρ = 0.95 (p-value = 0.0011) for right VOIs
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distinct cases for each hemisphere, and a predictor had 
to be trained to obtain the full set of performance scores 
corresponding to the 2n possible binary lesion configu-
rations (predicted MSA). Moreover, in addition to the 
choice of the predictor (see “Choice of machine learning 
predictor” section) an extensive study of the best-suited 
training dataset is necessary. We investigated two train-
ing sets: the original-graded dataset and the thresholded-
binary dataset. In clinical practice, lesion information at 
the VOI scale is not a binary category indicating if the 
region is entirely lesioned or intact, but is provided as a 
graded percentage of lesioned voxels of a region. In this 
context, it is important to note that using the original-
graded dataset for training utilizes the information of the 
original data in the training without loss due to binariza-
tion. However, the training and test data do not have the 
same features, since the predictor is trained with graded 
data and then tested with binary data (256 binary lesion 
configurations required for the MSA). By using a binary 
dataset (after thresholding) for training, the type of 
training and the test data are identical, but the approach 
involves the choice of a threshold for the binarization, as 
well as the potential loss of information from threshold-
ing. Particularly, after binarization the number of unique 
configurations may change, because some graded con-
figurations become equal to each other at the binary level 
(i.e., these configurations are collapsed into each other), 
but have different associated behavioral scores and also 
different graded lesion patterns.

Each of the previous steps has to be carefully consid-
ered, since there is no ideal, objective method for bina-
rizing graded data, and no predefined predictor for 
generating missing behavioral data. In the present study, 
we systematically investigated the binarization threshold 
and the parameters of the machine learning predictor 
(focusing on SVMs with linear or radial basis function 
kernel). In order to find the best solution for the present 
dataset, we performed a sensitivity analysis on global and 
individual thresholds for binarization and compared the 
results of the prediction with both original-graded train-
ing and thresholded-binary training in terms of accu-
racy, computed by minimizing the error in the prediction 
of behavioral scores. The training of the SVM using the 
original-graded values appeared to show a better predic-
tion, due to the use of the continuously defined variables, 
as confirmed by RMSE and accuracy, which were slightly 
better than for thresholded-binary training. However, 
the use of training data of different type from the testing 
data led to a discontinuous spread of predicted values, as 
shown in Fig. 7.

The results computed with MSA by means of a thres-
holded-binary dataset for the training of a linear ker-
nel SVM (threshold  =  median value of all non-zero 

percentages of lesioned voxels) showed that contribu-
tions were all significantly different from zero (with the 
exception of the right temporal lobe) and that subcorti-
cal regions, such as bilateral caudate, and insula, together 
with the parietal and frontal lobe, were inferred to make 
the strongest contributions to essential brain function as 
reflected by the NIHSS. Interestingly, MSA revealed also 
negative contributions, specifically from the right puta-
men and left thalamus (for interpretation see also [24]). 
The comparison of contributions value obtained with the 
original-graded training instead of thresholded-binary 
training yielded some differences, especially for the lin-
ear kernel SVM. Interestingly, the results obtained with 
the radial basis function SVM kernel showed no substan-
tial differences to those obtained with linear SVM kernel, 
especially for right VOIs (see rank correlations in “Pre-
dicted MSA: original-graded versus thresholded-binary 
dataset and linear- versus RBF-kernel SVM” section).

Considering the differences using the two training 
methods, general recommendations can be derived. If 
the accuracies computed with original-graded and thres-
holded-binary training sets are similar and the dataset 
analyzed is small (i.e., composed of a small number of 
cases), the thresholding could cause significant loss of 
information due to the collapsing of configurations, and 
it would be preferable to choose the original-graded set 
to train the predictor and obtain the full set of perfor-
mance scores. However, if the dataset analyzed is large, 
as for the data presented here, it is feasible to choose the 
thresholded-binary set as we did.

MSA variants: advantages and drawbacks
The main drawback of the classic full information MSA is 
the need for 2n performance scores corresponding to the 
binary configurations (here 256). These numbers quickly 
increase with the number of elements of interest, requir-
ing, for example, 1024 configurations for ten VOIs. For 
this reason, the application of the standard full informa-
tion predicted MSA is limited to a small number of VOIs 
that need to be carefully selected. The number of brain 
regions that can be investigated properly with the stand-
ard MSA approach depends on the available sample size, 
but is typically limited to around ten brain regions, given 
the typical sample sizes of large multi-centre stroke stud-
ies. Otherwise, the number of unknown lesion configura-
tions and consequently the number of behavioral scores 
that need to be predicted grows too large, which also rep-
resents a considerable limitation for any machine learn-
ing technique. Frequently however, a resolution of about 
ten regions of interest provides a meaningful scope for 
the interpretation of lesion findings.

In this context we also investigated a variant of MSA, 
the estimated MSA, which is useful in studies where 
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the number of system elements is too large to enumer-
ate all configurations in a straightforward manner, such 
as studies focusing on many small VOIs or even single 
voxels. This MSA variant is computationally convenient, 
because it can sample orderings and calculate an unbi-
ased estimator of the contribution of each element. MSA 
variants were already presented by Keinan et  al. [26] 
where the authors focused on the analysis of large com-
plex networks. Keinan et al. showed that the estimation 
and prediction variants successfully allowed the analysis 
of several neurocontrollers consisting of up to 100 neu-
ral elements. The contributions we obtained in the pre-
sent study with estimated MSA were almost identical to 
the ones obtained with predicted MSA, and this result 
is encouraging in the perspective of analysing a larger 
number of more finely resolved anatomical or functional 
brain regions. In this context, it may eventually even be 
possible to apply the MSA for lesion inferences at the 
voxel-level. In doing so, it would no longer be necessary 
to use thresholds for binarization, since lesions at the 
voxel level produce binary states of lesioned and intact 
elementary nodes. However, such a feasibility analysis of 
maximum spatial resolution is beyond the scope of the 
present study and subject to future investigations.

MSA versus other multivariate lesion inference approaches
How does MSA differ to other multivariate lesion infer-
ences? Another multivariate approach is multi-area pat-
tern prediction (MAPP) [24], which is based on SVM and 
offers a way of comparing MSA and MVPA [17] strate-
gies. While not identical to MVPA, MAPP operates in the 
same spirit, by computing the leave-one-out cross-vali-
dation with n different datasets (n = number of regions), 
obtained respectively by removing each single region one 
at a time. In this way, we can measure how important each 
region is for the prediction procedure (i.e., by its individ-
ual contribution to the prediction error [24]). Similar to 
MSA, MAPP makes use of SVM in order to compute the 
RMSE in the leave-one-out cross-validation procedure. 
Like MSA, it is also applied to the thresholded-binary 
dataset with the corresponding performance scores, but 
in contrast to MSA, it does not require the full set of 
lesion configurations with associated performance scores.

It is also important to mention that controlling for total 
lesion volume can have a considerable impact on the 
lesion-symptom mapping approach [21]. In fact consid-
ering lesion size can be especially important to separate 
the specific effects of damage to a particular voxel from 
effects resulting from the generally higher damage likeli-
hood in patients with large lesions compared to patients 
with small lesions. In this context Mirman et  al. [37] 
reported similar anatomical results for univariate and 
multivariate approaches after accounting for lesion size.

An exhaustive numerical comparison between MSA and 
MAPP, or other recent multivariate approaches (i.e. SVR-
LSM [21]), should be based on ground-truth simulations 
[19], which is beyond the scope of the present project.

Conclusions
The MSA approach provides a new, principled method 
for the objective, multivariate computation of regional 
causal contributions to brain function. The approach 
reveals characteristic contribution patterns for behav-
ioral and cognitive functions based on clinical scores 
and may provide useful guidance for rehabilitation. The 
method requires conditioning of the data, and we showed 
here that some parameters are crucial in the analysis: 
the threshold for binarization of graded lesion patterns, 
the choice of the algorithm for predicting unknown 
behavioral scores, and the choice of the training set. We 
demonstrated that there are no particular predictors or 
thresholds for the binarization that generally perform 
better than others. The choices of these settings are sub-
jective, but we provide some general recommendations 
which, when considered in combination with a sensitivity 
analysis on these parameters, can be helpful for finding 
the best approach for given datasets.

In general, the results presented here are still prelimi-
nary, but indicate how MSA may allow building a matrix 
of causal functional contributions and provides useful 
guidance for rehabilitation.
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