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A mathematical model provides 
mechanistic links to temporal patterns 
in Drosophila daily activity
Andrey Lazopulo and Sheyum Syed*

Abstract 

Background:  Circadian clocks are endogenous biochemical oscillators that control daily behavioral rhythms in all 
living organisms. In fruit fly, the circadian rhythms are typically studied using power spectra of multiday behavioral 
recordings. Despite decades of study, a quantitative understanding of the temporal shape of Drosophila locomotor 
rhythms is missing. Locomotor recordings have been used mostly to extract the period of the circadian clock, leaving 
these data-rich time series largely underutilized. The power spectra of Drosophila and mouse locomotion often show 
multiple peaks in addition to the expected at T ~ 24 h. Several theoretical and experimental studies have previously 
used these data to examine interactions between the circadian and other endogenous rhythms, in some cases, 
attributing peaks in the T < 24 h regime to ultradian oscillators. However, the analysis of fly locomotion was typically 
performed without considering the shape of time series, while the shape of the signal plays important role in its 
power spectrum. To account for locomotion patterns in circadian studies we construct a mathematical model of fly 
activity. Our model allows careful analysis of the temporal shape of behavioral recordings and can provide important 
information about biochemical mechanisms that control fly activity.

Results:  Here we propose a mathematical model with four exponential terms and a single period of oscillation that 
closely reproduces the shape of the locomotor data in both time and frequency domains. Using our model, we reex-
amine interactions between the circadian and other endogenous rhythms and show that the proposed single-period 
waveform is sufficient to explain the position and height of >88 % of spectral peaks in the locomotion of wild-type 
and circadian mutants of Drosophila. In the time domain, we find the timescales of the exponentials in our model to 
be ~1.5 h−1 on average.

Conclusions:  Our results indicate that multiple spectral peaks from fly locomotion are simply harmonics of the circa-
dian period rather than independent ultradian oscillators as previously reported. From timescales of the exponentials 
we hypothesize that model rates reflect activity of the neuropeptides that likely transduce signals of the circadian 
clock and the sleep–wake homeostat to shape behavioral outputs.
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Background
Biological oscillators with periods varying from seconds 
to years play important roles for most living organisms 
[1]. These oscillators have been divided into three groups 
by period length: (1) circadian oscillators, with periods 

close to 1 day; (2) ultradian oscillators, with periods less 
than 24 h; and (3) infradian oscillators, slower than cir-
cadian oscillators, with periods from a few days to a few 
seasons. Examples of ultradian rhythms can be found in 
the oscillation of body temperature in golden hamsters 
and in electroencephalogram measurements from the 
human brain [2, 3]. Infradian oscillations can be seen in 
animals, such as birds, that have annual migration cycles 
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[4]. Behavioral oscillators form the group of oscillators 
that are responsible for adaptation to external environ-
ments, control of daily cycles of activity, annual repro-
ductive rhythms, and migrations [5]. The most prominent 
and well-studied of the behavioral oscillators is the circa-
dian clock [6–8].

The circadian clock is an endogenous biological oscil-
lator with a period of approximately 24  h that controls 
daily activity and is found in most plants and animals. 
This clock helps to synchronize an organism’s internal 
processes and behavioral outputs with the daily light–
dark cycle. The fruit fly Drosophila melanogaster is one 
of the primary model organisms in the study of behavio-
ral rhythms and previous studies in this invertebrate have 
revealed the core components of the circadian clock that 
have been subsequently found to be conserved in other 
organisms, including mammals [9].

How these overt behavioral rhythms are generated 
has been an active topic of research for decades. One 
of the first theoretical models for the circadian system 
was proposed by Pittendrigh, who suggested that the 
circadian clock consists of multiple oscillatory compo-
nents that maintain identical frequency and appropriate 
phasing through external entrainment [10]. An alterna-
tive mechanism was proposed by Pavlidis who relied on 
contemporary research showing that most known bio-
chemical oscillators had periods which did not exceed a 
few minutes [11]. Pavlidis showed mathematically that 
a system of strongly coupled oscillators with short peri-
ods can produce a robust circadian rhythm and simulate 
many aspects of circadian behavior. The Pavlidis mech-
anism was supported subsequently by various math-
ematical models in which circadian rhythms result from 
a coupling of ultradian oscillators with periods of a few 
hours [12, 13]. In yet another theoretical study circadian 
rhythms were generated by coupling oscillators with 
periods of only a few seconds [14].

Behavioral studies of various animals claim to reveal 
multiple ultradian rhythms in daily activity [15–21]. 
These studies are commonly performed using spectral 
analysis of activity recordings. Power spectra typically 
show multiple peaks at periods of less than 24 h, which 
some studies have attributed to ultradian oscillators. In 
these behavioral studies short ultradian rhythms asso-
ciated with foraging activity were observed in Sibe-
rian hamsters [15] and common voles [16]. The animals 
were studied under conditions disruptive to circadian 
rhythms, leading the authors to suggest that these ultra-
dian rhythms are independent of the circadian clock. 
Other research has shown periods between 4 and 
12 h in the activity of inbred strains of mice [17]; these 
rhythms were observed both in 12 h light/12 h dark con-
ditions and in constant darkness. A more recent report 

from Blum et al. on dopamine-dependent oscillations in 
mouse activity with a ~4 h period has reinvigorated the 
discussion on ultradian rhythms in mammalian behav-
ior [18]. In studies of fruit fly activity, ultradian rhythms 
were first claimed in per0 flies measured under constant 
conditions [19, 20]. Circadian rhythms are abolished in 
per0 animals due to a mutation in the period (per) gene 
[22]. Subsequently, ultradian rhythms were also reported 
in wild type and other clock mutants of Drosophila mela-
nogaster [21]. Based on these data, the authors proposed 
that in fruit flies per couples ultradian oscillators and 
ultimately produces a circadian rhythm. However, even 
though it was not explicitly mentioned, power spectra in 
these studies were interpreted under the assumption that 
only one spectral peak results from the circadian clock 
and therefore the activity data have a sinusoidal shape. In 
reality, rhythmic behavioral data often have a non-sinu-
soidal shape in time.

The core of the Drosophila circadian clock consists 
of four proteins, PERIOD (PER), TIMELESS (TIM), 
CLOCK (CLK) and CYCLE (CYC), that form a nega-
tive feedback loop [7]. Although the molecular compo-
nents differ, circadian clocks in mammals and plants also 
employ similar genetic architecture and, in each case, this 
conserved architecture produces clock gene oscillations 
that are sinusoidal in shape with period of approximately 
24 h [8, 23–26]. These molecular oscillations converge on 
downstream behavioral circuits such as those for sleep, 
feeding and mating, and ultimately shape daily activity of 
organisms [3, 27, 28]. In Drosophila, temporal patterns in 
solitary activity are generally studied using locomotion 
measurements by detecting a fly crossing an infra-red 
light beam in the middle of a tube. A typical recording 
shows a non-sinusoidal time series with two distinguish-
able peaks: the morning peak (M), which starts during 
the end of the night time and has its maximum when the 
light turns on; and the evening peak (E), which starts dur-
ing the end of the day and reaches its maximum when the 
light turns off. The M and E activity peaks are thought to 
be produced by two groups of pacemaker neurons, the M 
and E oscillator cells, and modulated by neuropeptides 
secreted by the pacemakers [29–32]. These two groups 
of neurons produce different neuropeptides. The neuro-
peptide produced in the morning oscillator cells is pig-
ment dispersing factor (PDF) which has been shown to 
synchronize clock neurons and promote morning activ-
ity in fly behavior [33]. One of the neuropeptides pro-
duced by the evening oscillator cells is called the ion 
transport peptide (ITP) which is thought to influence 
fly activity around dusk [34]. A second possible source 
for the non-sinusoidal shape is the fly sleep homeostat, 
a feedback system that keeps track of sleep need in the 
animal. In mammals, the homeostat output has been 
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modeled as repeating patterns of exponential rise and 
decay [35]. Assuming the fly sleep homeostat produces 
similar patterns, interaction of its output signal with that 
of the clock could shape the final behavioral output as a 
non-sinusoidal waveform, as seen in locomotor record-
ings. Indeed, that sleep–wake signals influence locomo-
tor output is a standard assumption in fly studies which 
now routinely use locomotion as a read-out of sleep and 
wakefulness [36]. These possibilities suggest that under-
standing the temporal shape of the recordings could pro-
vide systems-level access to the biochemical pathways 
that influence fly locomotion patterns.

A mathematical description of the widely studied daily 
locomotion patterns in flies is currently missing and its 
absence has limited our interpretation of the data in both 
frequency and time domains. In frequency space, spec-
tral data of locomotion are typically interpreted without 
considering the shape of the activity time series, although 
it is well-known from Fourier’s theorem that the form of 
the time series is a critical determinant of its power spec-
trum. For example, non-sinusoidal signals with a single 
periodicity, such as square or triangular waves, produce 
power spectra with multiple peaks, which correspond to 
the harmonics of the primary period. In the time domain, 
beyond a qualitative description of how M and E peak 
heights vary with simple perturbations, no biophysical 
description exists for the peculiar shape of fly locomo-
tor activity. For instance, we do not know what biologi-
cal processes control the rates of increase and decrease of 
activity around M and E peaks.

We address these limitations by constructing a sim-
ple waveform with a single period that closely resem-
bles the shape of fruit fly activity. Our model consists of 
four exponential terms that generate a pattern resem-
bling the M and E peaks. The power spectrum of the 
proposed waveform has peaks at harmonics of the pri-
mary period T0 and we demonstrate that the predicted 
spectral peaks can account for the multiple periodici-
ties seen in the power spectrum of Drosophila locomo-
tion. The data show that lesions in circadian genes that 
shift the circadian peak also shift the ultradian peaks, 
in accordance with our model. Genetic or environmen-
tal ablation of the circadian clock expectedly elimi-
nates the circadian spectral peak but also reduces to 
noise levels the height of peaks in the ultradian range. 
Thus we weaken the competing view that circadian 
rhythms may arise from the coupling of ultradian oscil-
lators by showing that the secondary spectral peaks in 
Drosophila locomotion, rather than being produced by 
independent oscillators, simply result from the non-
sinusoidal shape of fruit fly activity. In the time domain, 
we determine the model exponential rate constants for 
wild-type and clock mutants of Drosophila. These rates 

which vary widely in magnitude between 0.024 and 
14.5 h−1, with mean value of 1.49 h−1, are found to be 
independent of the pace of the circadian clock. Guided 
by these results, we propose that the exponents might 
come from the accumulation and release rates of neu-
ropeptides important in regulating activity and sleep in 
the fly brain. Finally, we use the model to make quanti-
tative predictions about candidate biological processes 
in general that could give rise to the rate constants and 
suggest future experiments to help identify the associ-
ated molecular substrates.

Results
Fruit fly activity was measured using the standard Dros-
ophila Activity Monitor (DAM). Each fly is placed in an 
individual tube with food on one end and cotton on the 
other (Fig. 1a). An infrared beam crosses the tube in the 
middle in a perpendicular direction. When a fly inter-
rupts the beam, the monitor receives a signal which is 
accumulated over time and sent to the computer every 
20 s (Fig. 1b). Power spectra for activity data were calcu-
lated using maximum entropy spectral analysis (MESA) 
and Lomb–Scargle periodogram (LS) (Fig.  1c). Spectra 
obtained by each method show the expected 24 h peak. 
Additionally, there is a series of statistically significant 
peaks at smaller periods (T) with peak values from the 
two methods agreeing with each other to within 2  %. 
Unlike MESA, the Lomb–Scargle periodogram has an 
easily computable significance metric, which allows 
one to distinguish between significant and insignifi-
cant periodicities in the power spectra. Departing from 
the practice of filtering data prior to spectral analysis, 
we determine all power spectra directly from raw data. 
A number of past studies on ultradian rhythms adopted 
digital filtering as a standard procedure in their analyses 
[18, 21, 37–39]. However, as we demonstrate in this work 
(see “Methods”; Additional file 1: Fig. S9 and associated 
text), application of digital filters can irrevocably modify 
statistical properties of a time series and can give rise to 
artifacts in its power spectrum.

Figure  2a shows population averaged fly activity 
obtained from measurement of 14 flies in simulated 
light–dark conditions (LD) for 5  days. Drosophila daily 
activity has two distinguishable peaks. The morning peak 
(M) starts during the night and has a maximum when the 
light turns on and the evening peak (E) starts during the 
day and has a maximum when the light turns off. We con-
structed a model with a single fundamental period which 
reproduces these features of the activity. Our model con-
sists of four normalized exponential terms with rates 
bMD, bMR, bED, and bER, with subscripts denoting morn-
ing decay (MD), morning rise (MR), evening decay (ED) 
and evening rise (ER):
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In the proposed waveform, exponential terms with 
rates bMD and bMR form the M peak with width TM while 
terms with rates bER and bED form the E peak with width 
TE (Fig. 2a right). Together, these four exponents create a 
wave with T0 = 24 h. The Fourier transform of F(t) con-
tains terms proportional to cos

(

2π T0
T

)

 and sin
(

2π T0
T

)

 , 
which produce peaks in the power spectra at harmonics 
of the primary period T0 (see Additional file 1). To esti-
mate peak heights, we analytically calculated Fourier 
transform only at harmonics Tn = T0/n of the primary 
period. The analytic expression has multiple terms such 
as those containing cos

(

2TMnπ
T0

)

, sin
(

2TEnπ
T0

)

, eTMbMD, 
and eTEbER (see Additional file 1: equations 5–7).

Since a mathematical function that adequately repro-
duces fly locomotor data has been lacking, we tested dif-
ferent waveforms to simulate locomotion and interpret 
its power spectrum. In previous work, it was assumed 
that behavioral rhythms have the form of a square wave 
[37]. Although a square wave with period T0 produces 
multiple spectral peaks (Additional file  1: Fig. S1), it is 
able to interpret only odd-numbered harmonics in spec-
tral data and does not completely mimic fly activity. We 
also tested a sawtooth wave, which is able to interpret 
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most spectral peaks, but does not describe with high 
fidelity the shape of Drosophila locomotion data. Fruit fly 
circadian behavior is controlled by the activity of clock 
neurons, which often have exponential patterns of acti-
vation and deactivation [40]. The underlying exponential 
kinetics and the observed shape of activity data moti-
vated us to build a model that consists of exponential 
terms.

In order to find similarities between the model and 
data and to look for the main periodicities in data, we 
first calculated the autocorrelation function. Autocor-
relation with 1  min time lags was obtained by calculat-
ing the covariance of each time series with itself. The 
periods of the time series can be found from regularly 
appearing peaks of high correlation. Even though both 
the model and the data have a primary period of 24  h, 
the autocorrelations show strong 24 and 12 h periodici-
ties (Fig. 2b). The 12 h periodicity results from the 12 h 
time interval between M and E peaks. Having obtained 
a basic level of similarity between data and model, we 
next analyzed them with the Lomb–Scargle periodogram 
to calculate a high-resolution power spectrum (Fig.  2c). 
Similar to the actual fly recordings, the proposed wave-
form with the primary period of 24  h shows multiple 
peaks in the power spectrum at values between 0 and 
24 h with the 12 h peak dominating. The 12 h periodicity 
is significantly increased by the externally imposed 12-h 
light/12-h dark cycle. The model power spectrum not 
only reproduces prominent peaks from the data, but also 
the smaller peaks that appear near the prominent peaks. 
These small peaks, whose number and position can be 

Fig. 1  Power spectrum of fly locomotor activity shows multiple peaks. a Schematic representation of fly activity measurement. Each time the 
enclosed fly crosses an IR beam, the computer receives a “1”. b Activity of a single wild type fruit fly measured in constant darkness. Subjective day/
night time is shown in white/grey bars. c Power spectrum of the fly activity. Spectrum from 0 to 30 h is shown on top, dashed rectangle is enlarged 
in the lower panel. Power spectra calculated with Lomb–Scargle (LS, black) and maximum entropy spectral analysis (MESA, red) methods show the 
expected ~24 h circadian peak and additionally show a series of statistically significant peaks at lower T . Dashed horizontal line represents statistical 
significance of 0.005 for the Lomb–Scarge spectrum. Peak positions detected by LS and MESA agree to within 2 %
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predicted from the Dirichlet kernel, arise from the fact 
that we work with finite discrete data (Additional file 1: 
Fig. S8). For both the experiment and the simulation, the 
circadian peak is ~24 h.

We noticed that the majority of peaks that appear in the 
power spectra of wild-type flies measured in LD occur at 
multiples of the primary period T0. To test if the second-
ary peaks result from the externally imposed light/dark 
cycle, we measured fly (N = 29) locomotion in constant 

darkness (DD) for 5–7  days. This analysis revealed that 
together with the 24 h peak reflecting the circadian clock, 
the power spectrum still has the same additional peaks 
that appear at multiples of T0 (Fig.  3a, top), suggesting 
that the additional periodicities in the power spectra of 
fly activity are simply harmonics of the endogenous cir-
cadian period T0.

To further test our assumption that multiple spec-
tral peaks of fly locomotion all result from the circadian 

Fig. 2  Comparison of data (left) to the model (right). a Average recording of 14 wild type flies measured in LD for 5 days; day/night shown 
with white/black bars. Model consists of four exponential terms with rates bMD , bMR, bER, bED, and widths of morning and evening peaks given 
by TM and TE. b Autocorrelations of data and model with primary period 24 h. Periods in signal are found from regularly appearing peaks 
with high correlation. Peaks exceeding the dashed line 2/

√
N, where N is number of data points in activity trace, represent strong correla-

tions. Strong 24 and 12 h periods are seen in both graphs. c Lomb–Scargle power spectra for the data and the model. Model reproduces 
strong peaks as well as small side peaks (arrows), which are from the Dirichlet kernel (see Additional file 1). Parameters used for this simulation: 
bMD = −0.81 h

−1
, bMR = 0.486 h

−1
, bER = 0.09 h

−1
, bED = 3.6 h

−1
, TM = 5.3 h, TE = 3.6 h.
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clock, we used different circadian period mutants of 
Drosophila melanogaster. We analyzed perS (N = 22) and 
perL (N = 19) flies, with average circadian periods of 19 
and 29.5  h (Additional file  1: Fig. S10), respectively, for 
the presence of secondary peaks in their power spectra. 
Activity of both genotypes was measured in constant 
darkness for 7  days and analyzed with Lomb–Scargle 
periodogram. Power spectra of the clock mutants show 
secondary peaks that, similar to wild-type, were found to 

be at multiples of the mutant T0 (Fig. 3a, middle and bot-
tom panels). Almost all peaks in the power spectra of the 
different genotypes line up after rescaling the period axis 
with the circadian period. These results predict that elim-
ination of the clock should abolish all rhythmicity in the 
power spectrum. We tested this prediction both by meas-
uring circadian null mutants and by rendering wild-type 
flies arrhythmic by placing them in constant light (LL). 
Power spectra of per0 (N = 38) and clkJrk (N = 23) clock 

Fig. 3  Our model correctly predicts majority of peaks in power spectrum of fly locomotion. a Power spectra of individual wild type and clock 
mutants of Drosophila measured in constant darkness for 5–7 days. X-axis given as ratio T0/T , with the circadian period T0 indicated in each case. 
Increasing values indicate shorter periods of oscillation. For each T0, prominent secondary peaks are found at T0/T = 2, 3, . . . accompanied by lower 
power Dirichlet kernel peaks. b Comparison of peaks detected in the data to peaks predicted by the model was obtained by analyzing wt (N = 29), 
perS (N = 22) and perL (N = 19) flies. Only peaks higher than p = 0.005 were used in the analysis. y = x is shown as a solid line, 10 % deviation shown 
as dashed lines. For wild type and clock mutants more than 88 % of the data peaks for T = 2–35 h can be explained by the model with ± 10 % error. 
c Power spectra of a wild type fly measured in LL and a per0 mutant measured in DD. Neither spectrum shows peaks higher than p = 0.005 signifi-
cance level (dashed line). For both graphs T0 = 24  h was used for scaling the abscissa
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mutants that do not show circadian rhythmicity in con-
stant darkness were determined from locomotor record-
ings of individual animals (Fig. 3c; Additional file 1: Figs. 
S2, S4) [22, 41]. The majority of per0 flies (N = 28) do not 
show statistically significant peaks at the p =  0.05 level 
between 2 and 35  h in the power spectra. Most clkJrk 
flies (N =  17) also do not have circadian rhythms and 
almost all peaks seen in the power spectra of wild-type 
flies between 2 and 35  h are absent in the power spec-
tra of these mutant flies (Additional file  1: Fig. S2). We 
also measured activity of yw (N = 16) flies in LL and ana-
lyzed their power spectra (Fig. 3c; Additional file 1: Fig. 
S5). Most flies (N = 13) appear arrhythmic, showing no 
significant periodicities between 2 and 35 h. These results 
together provide strong support for the majority of spec-
tral peaks resulting from the circadian clock producing a 
non-sinusoidal oscillation in fly behavior.

To test our model’s reliability, we compared peak posi-
tions in the power spectra for wild-type and shifted-
period clock mutants of Drosophila to peak positions in 
the power spectra of model with different primary peri-
ods (Fig. 3b). For each genotype we constructed a model 
with T0 matching the circadian period in the data, yield-
ing harmonics at values T0

1 , T0
2 , . . . , T0

n  in the power spec-
tra, which we then used to interpret peaks in the data. 
We used only peaks higher than the significance level of 
0.005 in order to exclude Dirichlet kernel peaks from the 
analysis. For all three genotypes our simple model is able 
to identify more than 88 % of peaks in the data to within 
10 % error (see “Methods” for details).

We next determined the exponents bMD  −  bED for 
wild-type flies in DD and LD. In our model, these expo-
nents define the shape of the M and E peaks. The model 
parameters were obtained from the power spectra of 
activity data (Fig. 4a). Spectra were fitted with an analyti-
cal expression H(Tn) obtained by calculating the square 
of the Fourier transform of F(t). The square of the Fou-
rier transform yields peak heights H(Tn) at harmonics 
Tn of the primary period (Tn = T0/n) [see Additional 
file  1: equations (5)–(8)]. In DD data, T0 was deter-
mined from the peak at the circadian frequency. Since 
the fitting procedure is sensitive to the initial choice of 
parameters, as an initial guess we used parameters from 
a preliminary fitting of activity data with the model. The 
exponents obtained from the fits shown in Fig.  4 are 
bMD = −0.09 h−1, bMR = 0.34 h−1, bER = −0.05 h−1 , 
and bED = 1.83 h−1 for LD, and bMD = 1.4 h−1, 
bMR = 0.24 h−1, bER = 0.50 h−1, and bED = 6.2 h−1 for 
DD. The analytical expression also produced good fits for 
the activity power spectra with the average peak height 
fit error of less than 10  % (Fig.  4b) (see “Methods” for 
details). Final values of the parameters determined from 
fitting the power spectrum were then used to construct a 

model for the activity recordings (Fig. 4c). For the meas-
ured wild-type flies, the constructed model shows good 
fit for locomotor activity with the average rate constant 
magnitude ~1.2 ±  2  h−1 (mean ±  standard deviation). 
The parameters bMD and bER obtained from fitting data 
can be either positive or negative, which means that the 
exponential terms with bMD and bER in F(t) can be either 
concave or convex. Interestingly, we find that the param-
eters bMR and bED are always greater than 0 and therefore 
corresponding terms are always concave. It should be 
noted here that our model does not impose any restric-
tions on the numerical values of the parameters.

While the predictive power of the model is reliable for 
T > 2 h, for T < 2 h our model strongly deviates from 
data (Fig.  4a, inset). The calculated model peak heights 
H(Tn) predict that for period values less than 2π/b , 
where b is the largest exponent, typically bMD or bER, 
the peak heights are proportional to T 4 (see Additional 
file  1). However, the data show weak sensitivity to T in 
this regime. There are a few factors that can affect the 
power spectrum of fruit fly activity at low period val-
ues. The first factor is that the locomotion measurement 
reports fly movement only when it crosses the middle of 
the tube. This lack of spatial resolution causes the system 
to miss small-scale movements which happen without 
the fly crossing the beam. A second factor is the Nyquist 
frequency. In any measurement the Nyquist frequency 
is equal to half of the sampling frequency and imposes a 
lower limit on the periods one can search for in a given 
time series. Thus, limitations imposed by both the meas-
urement method and by the Nyquist frequency likely 
result in detectable discrepancies between the data and 
the model for low T . For these reasons, all our model-
based predictions are restricted to T > 2 h.

In order to understand what factors affect the model 
parameters, we determined their values for different 
clock mutants and tested for their relation to the circa-
dian period T0. Wild-type, perS, and perL animals intro-
duced above together with timUL flies (N  =  11) with 
average T0  ~  27  h were used in these analyses (Addi-
tional file  1: Fig. S10). Given our mathematical descrip-
tion of fly activity, we hypothesized two possibilities: one, 
in which the rate constants do not vary but TM and TE 
adjust with T0 and another, in which both sets of param-
eters change with T0. Interestingly, the data show that the 
rate constants bMD, bMR, bER, bED do not depend strongly 
on T0 (Adj R2 < 0.1 for linear fits), whereas the param-
eters TM and TE that determine width of the morning 
and evening peaks, increase with T0 (Fig.  5a). Assum-
ing the measured parameters represent characteris-
tics of underlying biological processes, the robustness 
of the rate constants suggests that the pace of the clock 
likely does not alter the kinetics of these processes. On 
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the contrary, tight association between TM and TE and 
clock speed suggests that the clock may regulate when 
these processes are initiated and terminated. The rate 
constants typically range between ±5  h−1 for bMD and 
bER, and between 0 and 1.5  h−1 for bMR and bED, with 
average bMD = 1.64 ± 2.3 h−1, bMR = 0.78± 0.77h−1, 
bER = 2.19± 3.2h−1, bED = 1.2± 1.6h−1 (mean ± stand-
ard deviation). The mean  ±  standard deviation of the 
magnitude of the four rate constants from all flies tested 
in constant darkness is 1.5± 2.0h−1. Lastly, linear fits 
of the TM(E) versus T0 data reveal TM(T0) ≈ 0.19T0 and 
TE(T0) ≈ 0.29T0 (Adj R2

= 0.90 and 0.95, respectively) 
(Fig. 5a, bottom panels).

Based on the observed independence of the b param-
eters and the linear dependence of the TM(E) parameters 
on the circadian period, we argued using the model that 
the average amplitude of daily activity must also increase 
with T0 (Fig.  5b). To test this prediction, we measured 
for each fly an activity amplitude, h, by averaging M 
and E peak heights in each recording. A plot of h vs. T0 
shows that amplitude of activity indeed increases with 
lengthening of the circadian period (Fig.  5c). The form 
of our model function F(t) suggests that h and T0 can 
be related according to h = c(1− e−kT0), which in the 

linear approximation becomes h ≈ CT0, with c, k and 
C as fit parameters. Due to the large scatter in our data, 
the simpler linear expression is statistically favored over 
the exponential function, yielding h(T0) ≈ 1.4T0 (Adj 
R2

= 0.85). The surprisingly good agreement between 
the data and the prediction of our simple model further 
validates the mathematical description of fly locomotion 
pattern proposed in this work.

Discussion
While a large number of studies have exploited rhyth-
mic patterns in fruit fly activity to query the status of 
the circadian clock, the broader question of what prin-
cipal endogenous systems other than the clock shape 
these patterns, remain poorly understood. Here we 
attempt to fill this gap by formulating a simple math-
ematical model that accommodates the diverse loco-
motion patterns exhibited by Drosophila over the 
time-scale of multiple days. The model has two major 
components: an oscillatory component character-
ized by a single period and an exponential component 
defined by four rate constants. We show that these 
components are together sufficient to explain promi-
nent features in both the power spectra and the time 

Fig. 4  Model parameters are obtained by fitting the power spectrum. a Examples of data power spectrum (black line) and fit (red diamonds) for 
a wild type fly measured in LD (top) and DD (bottom). In the LD data, the 12 h peak is stronger than the 24 h peak and was therefore used as the 
reference peak in the fit. Comparison of model and data power spectra for low T  shown in the inset. For low values of the period, the model predicts 
peak height H(T ) ∝ T 4 (inset, dashed line), a behavior not shown by the data. b Errors in peak height estimation from 10 flies (mean error ± standard 
deviation). On average, peak heights are estimated with error of 10 % (dashed lines) or better. c Parameters obtained from a are used to construct 
model of fly activity. Data (black line) shown in 20 min bins; day/night shown with white/black bars for LD and subjective day/night shown with 
white/grey bars for DD
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series of fly locomotor recordings. Using the model, 
we show that the position and height of over 88  % of 
locomotor spectral peaks can be accounted for as har-
monics of circadian rhythms. We use this finding as 
evidence to support the view that in flies daily loco-
motor rhythms receive negligible input from endog-
enous ultradian clocks. Using the proposed model, we 

additionally extract values of the exponential rate con-
stants in a variety of flies. We propose that these rate 
constants could represent kinetics of neurobiological 
processes that, such as the secretion of neuropeptides, 
have been implicated in modulating behavior. We sug-
gest our data and model-based predictions open up fly 
behavioral recordings to more rigorous analysis.

Fig. 5  Analysis reveals quantitative relations between model parameters and circadian period. a Parameters extracted from fitting locomotor data 
of wild type (N = 11), perS (N = 22), perL (N = 19) and timUL (N = 11) flies measured in constant darkness for 5–7 days. Plotted parameter is indicated 
in the adjacent box for each graph, with curvatures shown for bMD , bMR , bER , bED > 0. The data show that the exponential rate constants are inde-
pendent of T0, while parameters TM and TE grow roughly linearly with T0. Dashed lines are visual guides (top and middle panels) or linear fits (bottom 
panels). b Sketch of two locomotor patterns where the red locomotion is driven by a faster clock (shorter T0). If increase in T0 results in lengthen-
ing of activity peak widths from TM,short to TM,long without altering the exponential rates, our model predicts that the activity amplitude must also 
increase from hshort to hlong. The first M peaks are shown to overlap to emphasize constancy of the exponential rates. The red sketched activity has 
been vertically shifted for visual clarity. c Data from flies in a demonstrate a positive correlation between average activity amplitude h and the circa-
dian period T0. Dashed line is a linear fit to the data giving h ≈ 1.4T0
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Ultradian and circadian clocks are known to co-exist 
in animals but the extent of interactions among the two 
classes of endogenous oscillators is still unresolved. 
Previous work on this issue outlines three possible rela-
tionships between circadian and ultradian rhythms: i) a 
circadian rhythm is produced by the coupling of ultradian 
oscillators, and ultradian peaks seen in power spectra are 
components that break down from the circadian clock 
[19–21, 42]; ii) ultradian and circadian oscillators exist 
independently in the organism [15, 21]; and iii) ultradian 
rhythms come from the desynchronization of a popula-
tion of circadian oscillators [21]. Using our model we can 
address the first two hypotheses. We have shown that 
multiple periodicities in power spectra result from a non-
sinusoidal shape of Drosophila locomotion and appear 
at harmonics of the circadian rhythm (Fig.  3a, b). Since 
nearly all peaks in our fly power spectra come from circa-
dian rhythms (Fig. 3c; Additional file 1: Figs. S2–S5), we 
suggest the first hypothesis, which states that circadian 
rhythms result from the coupling of ultradian oscillators, 
is unlikely. The assumption of the second hypothesis, that 
circadian and ultradian oscillators coexist, is possible; 
however we have shown that more than 88  % of peaks 
that stably appear between 2 and 35 h in the power spec-
tra of fly locomotion result from the circadian clock. Our 
attempts to detect intermittent ultradian activity revealed 
such behavior in <5 % of the total recording time (Addi-
tional file 1: Fig. S7). These results therefore indicate that 
there are no robust ultradian oscillators with periods in 
this range detectable in fly activity. Our data are at odds 
with claims made by several previous examinations of 
locomotion [17, 19–21, 43]. The previous studies missed 
the harmonics likely due to a combination of disregard-
ing the non-sinusoidal pattern of the raw time series, 
the inappropriate use of digital filters and the lack of 
proper statistical metrics. Our data, together with bona 
fide ultradian periodicities discussed in other behavioral 
contexts such as male courtship song [44, 45] or calcium 
oscillations in neurons [46], suggest that second hypoth-
esis is most likely, and that there is minimal cross-talk 
between the two types of oscillators, at least at the level 
of behavioral output. In brief, our results contradict the 
previously espoused role of multiple ultradian oscillators 
shaping locomotion. Instead, the data support a parsimo-
nious model in which a single circadian oscillator regu-
lates all rhythmic modulations of fly locomotion.

Data on ultradian rhythms reported in locomotion of 
mammals can also be considered in relation to the circa-
dian clock. Studies that addressed this question in Sibe-
rian hamsters and common voles concluded that the 
ultradian rhythms are generated independently of the cir-
cadian clock [15, 16]. Autonomy of mammalian ultradian 
rhythms was further affirmed by a recent work in mice 

that identified dopamine as a major regulator of and, 
possibly, the source of these ~4 h oscillations [18]. These 
previous data from mammals raises the question of why 
Drosophila locomotion does not exhibit robust ultradian 
oscillations. Our model, which incorporates only circa-
dian rhythms, reliably predicts spectral peak heights and 
positions in rhythmic flies of different genotypes and 
genetic backgrounds and shows an absence of rhythms 
in circadian arrhythmic animals. Compared to mammals, 
the fly data suggest that if there is an ultradian signal that 
feeds into locomotion, it is either much weaker or has a 
period ≪2 h where our model does not strictly apply.

Beyond addressing the rhythmic component of loco-
motion, our model also captures the general temporal 
shape of fly locomotion. Despite widespread use of these 
time series in fly circadian studies, to our knowledge, 
proposed F(t) is the first description of the multi-day 
data in mathematical terms. In our mathematical model, 
the various shapes of these time series are quantified in 
terms of four exponential rate constants, bMD − bED, that 
control the slopes around the morning and evening activ-
ity peaks and the parameters TM − TE, that control the 
widths of these peaks. Although one may assume that all 
model parameters should scale with the circadian period, 
our measurements reveal that while TM and TE increase 
with the circadian period, the exponents bMD, bMR,bER, 
and bED intriguingly do not (Fig. 5a). Independence of the 
rates from the circadian period indicates that mutations 
in per and tim do not affect the rate constants bMD − bED , 
suggesting that the rate constants possibly represent 
clock-autonomous biological processes. This observa-
tion together with available biochemical data, leads us to 
hypothesize that the rate constants could represent pro-
cesses like accumulation, release or degradation of neuro-
peptides, particularly those that are involved in the clock 
neuronal network. Neuropeptides pigment dispersing 
factor (PDF), ion transport peptide (ITP) and neuropep-
tide F (NPF) modify M and E clock neurons and influ-
ence locomotor patterns [34, 47, 48]. The abundance of 
these neuropeptides, in turn, are modulated by the clock 
[34, 49]. But their rates of accumulation in neurons, sub-
sequent secretion, and degradation are presumably con-
trolled by cell-biological machinery whose rate-limiting 
steps are set independently of the circadian program [50]. 
Therefore, we propose the b rate constants could rep-
resent average measures of some of these kinetic steps. 
Specifically, since PDF controls morning anticipation, 
which in our model is shaped by bMD and bMR, we sug-
gest these parameters may reflect kinetic steps related to 
PDF [33]. Similarly, because ITP reduces nocturnal activ-
ity and enhances diurnal evening activity, its kinetics may 
contribute to exponents bER and bED which form the E 
peak in our model [34]. Regarding temporal modulation 
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of the levels of the neuropeptides, our model suggests 
that it likely results from the clock periodically initiat-
ing and terminating the key kinetic steps. In circadian 
rhythms, neuropeptide activity has so far been accessible 
largely through biochemical assays. Our analysis using 
F(t) may have established a potential link to the relevant 
neuropeptide kinetics through the behavioral rhythms 
that these neuropeptides are thought to modulate.

Alternatively, the model exponents could represent 
signals that feed into locomotor circuits from other 
endogenous systems such as those controlling fly sleep–
wake states. Daily temporal patterns in sleep and activ-
ity in flies, like in mammals, are coordinated with major 
inputs from the circadian clock and the sleep homeostat 
[36]. Studies on human sleep patterns, in particular, have 
led to a model in which the sleep homeostat output is 
described as an exponentially varying signal [35]. In this 
model, the varying signal is the sleep electroencephalo-
gram (EEG) power density that exponentially increases 
during daytime wakefulness and diminishes during 
nighttime sleep, producing a singular peak in the signal 
in the early evening. The average rate constants associ-
ated with the increase and decrease of EEG power are 
~0.06 and ~0.24 h−1, respectively. Interestingly, these are 
well within the range of values we find for the b param-
eters. Although output of the fly sleep homeostat has yet 
to be defined, it is reasonable to assume that its architec-
ture may resemble that of the human homeostat given 
the substantial mechanistic overlap already uncovered 
between fly and human sleep [36]. Together, these simi-
larities are consistent with a hypothesis in which the rate 
constants extracted from fly locomotion could be repre-
sentative of the fly sleep homeostat.

Our mathematical model also permits a number of 
general predictions to be made about candidate neuro-
biological processes that may underlie our model param-
eters (Fig. 6). First, we propose that the candidate process 
can be described, for simplicity, in terms of linear or 
exponential growth-decay kinetics. Second, the processes 
are presumably sporadic when averaged over many neu-
rons. Their random nature would imply they have noisy 
power spectra (Fig. 6a, middle row) and considering the 
processes are key modulators of behavior, their average 
stochastic nature should result in arrhythmic behavior 
in the absence of the circadian clock (Fig. 3c). Third, we 
suggest that the underlying processes have kinetics on 
the time-scale of tens of minutes. This constraint is based 
on the magnitude of the model rate constants, which are 
~1.5  h−1 on average, suggesting that the processes they 
represent persist for ~40 min. At the molecular level, this 
is a long time-scale and suggests that neurotransmitter 
activity or electrical pulses, which also have exponential 

kinetics but act on the time-scale of seconds or less, are 
unlikely to be direct contributors to the exponents in 
F(t). However, neuropeptide half-life in the brain and 
accumulation in synaptic boutons happen over span of 
~30 min, making these substrates attractive candidates in 
our model [50]. Lastly, we suggest that on the time-scale 
of hours the circadian clock is likely the sole pacemaker 
(Fig. 6a, top row) to temporally gate the relevant neurobi-
ological processes. The circadian gating imposes rhythm 
on otherwise stochastic processes and when integrated 
with additional downstream signals, ultimately produces 
rhythmic patterns in locomotion (Fig.  6a, bottom row). 
Related to the circadian gating are two additional features 
that the hypothetical processes might display (Fig.  6b). 
We suggest that changes in the period of the clock may 
cause not only parallel changes in the rhythm of the pro-
cesses but, importantly, also changes in the amplitude of 
their oscillation. For instance, if bMD and bMR are indeed 
related to PDF activity, our model predicts that compared 
to perL animals, in perS animals both the period and the 
peak–peak amplitude of PDF oscillation is smaller. This 
prediction is based on our assumption that such changes 
in the amplitude of the underlying processes likely causes 
the correlation observed in our data between the aver-
age locomotor amplitude and the circadian period, which 
is predicted surprisingly well by our model (Fig.  4b, c). 
Together, these characterizations should facilitate experi-
mental identification of the key neurobiological processes 
that our model parameters represent.

Conclusions
In summary, this work initiates a more mathematical dis-
section than is currently available of the temporal shape 
of fly locomotor recordings. We point out that such anal-
ysis can lead to experimentally verifiable predictions of 
what major biological processes regulate daily manifes-
tations of behavior. As examples of such candidates, we 
propose accumulation and degradation of neuropeptides 
implicated in controlling sleep-activity in flies and sug-
gest these kinetic steps are gated principally by the circa-
dian clock. Critically, our mathematical model now opens 
up the recordings to quantitative scrutiny towards clearer 
mechanistic understanding of daily rhythmic behaviors 
in Drosophila and other organisms.

Methods
Fly strains and recording
The following fly strains were used in this study: Canton-
S, yw, per0, perS, perL and timUL. All flies were raised on 
standard Drosophila medium (corn meal, agar, malt, 
yeast). Only 2–5  day old male flies were used in the 
experiments. In all experiments Canton-S flies were 
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used as wild type control, except in constant light experi-
ments where yw flies were used, since per0 flies have yw 
background.

Locomotion was recorded using activity monitors 
(DAM5 TriKinetics Inc., MA). Monitors were placed in 
an environmental chamber (Percival Scientific DR36VL, 
max light intensity 4000  lx) maintained at 25 degrees 
Celsius and 70–80  % relative humidity. In all experi-
ments flies were first entrained in 12-h light/12-h dark 
conditions for 2–3  days. In light/dark experiments, 

after entrainment locomotion was measured in the 12 h 
light/12 h dark day with 20 s binning for 5 days. In con-
stant darkness experiments, activity of Canton-S, per0, 
perS, perL and timUL flies was measured with 20  s bin-
ning for 5–7 days. The first day of constant darkness after 
entrainment was not used in the analysis.

Spectral analysis
Data from monitors were visualized and processed 
with custom written Matlab (MathWorks Inc., MA) 

Fig. 6  Our results make quantitative predictions about biochemical signals that may shape fly locomotor patterns. a Cartoon showing circadian 
genes and their products oscillate in a sinusoidal fashion (top row, left) and produce a power spectrum with a single peak (top row, right). We pro-
pose that efferent signal from the clock impinges on exponential processes that turn on/off stochastically in time. An example may be neuromodu-
lator accumulation and release (middle rows, left). Without circadian regulation, the exponential process should result in noisy power spectra (middle 
rows, right). Integration of the sinusoidal with the exponential processes together with other signals (not shown) result in the observed shape of 
fly locomotion (bottom row, left). The resulting time series has multiple peaks in power spectrum by virtue of its non-sinusoidal shape (bottom row, 
right). b We suggest that the exponential processes that may underlie the observed shape in locomotion are temporally gated by the circadian 
clock. If so, then changing rhythm of the clock should cause corresponding changes both in the oscillatory period and the peak–peak amplitude 
of the gated signal. Shortening period of the clock (Tlong → Tshort) predicts speeding up of the periodic exponential process and decrease of its 
amplitude of oscillation (Along → Ashort). In these cartoons, it is assumed that the rate at which the exponential process occurs, for instance, the rate 
of neuromodulator release, is not affected by the circadian clock speed. To underscore the constant rate, the first decay phase of the fast and slow 
exponential waves are overlaid
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scripts. Power spectra of fly locomotion were calcu-
lated using two methods: maximum entropy spectral 
analysis (MESA) [51] and Lomb–Scargle periodogram 
(LS) (http://www.mathworks.com/matlabcentral/
fileexchange/22215-lomb-normalized-periodogram). 
The power spectra produced by LS are normalized by 
the data variance. MESA uses an autoregressive model as 
an approximation for time series. In this model, a point 
at time t is given as a linear combination of previous m 
data points, where m is the order of the model. Coeffi-
cients of the linear approximation form a filter and are 
used to generate the power spectrum of the time series 
using the Andersen algorithm [52]. Although MESA pro-
vides high resolution even with noisy signals typical in fly 
locomotion, it does not have a convenient significance 
test for spectral peaks. The Lomb Scargle method is a 
slightly modified classic periodogram and was developed 
to detect weak rhythms in noisy data. LS is similar to the 
Fourier analysis method, but with better resolution and 
an easily computable statistical metric for noise discrimi-
nation. Additionally, since the LS method is similar to the 
classic periodogram, its results can be directly compared 
to the Fourier transform. These advantages make LS par-
ticularly applicable in our studies since we seek to distin-
guish real periodicities from noise and use analytically 
derived power spectra to determine model parameters.

Power spectra fit and determination of model parameters
The analytical expression for peak heights H(Tn) in the 
power spectrum was obtained using Mathematica (Wolf-
ram Research, IL), while fitting was performed using 
Matlab. To get the expression for the peak heights H(Tn) 
we calculated the Fourier transform of the model func-
tion F(t) as a periodic signal (see Additional file 1):

where T0 is the primary period in the model and 
Tn = T0/n, with n = 1, 2, 3, . . . , are harmonics. The 
square of this Fourier transform gives values of H(Tn) 
[Additional file 1: equations (5)–(8)].

Model parameters were obtained in the following way. 
First, we determined power spectrum (PS) of the data 
using Lomb–Scargle periodogram. The PS was used to 
determine the primary period T0 of locomotion. In the 
DD data, the period was found from peak at the circa-
dian frequency. For flies measured in LD, the 12 h peak 
is typically the strongest, therefore value for T0 was set 
by doubling the period of the second harmonic. Data 
were next binned into 20 min bins so the M and E peaks 
are better visualized to manually determine parameters 

F̃(Tn) =
1

T0

T0
∫

0

F(t)e
i 2πnT0

t
dt,

TM and TE which correspond to the morning and even-
ing peak widths. Initial values of the b parameters were 
obtained from fitting the 20-min binned data with the 
model function F(t). In order to determine the final set of 
parameters, we fitted the PS between 2 and 35 h with the 
obtained analytical expression [Additional file 1: equation 
(8)], using the initial parameter values as a first guess. To 
accelerate the fitting process, we restricted to ±60  h−1 
the algorithm’s search for optimal rate constants; this 
limit was reached only occasionally. In our analysis we 
did not use power spectra for periods lower than 2  h, 
since in this range the PS typically does not have peaks 
above the p = 0.005 threshold.

Fit accuracy analysis
To determine how well our model interprets the data 
power spectra, we calculated what fraction of the spectra 
is predicted by the analytical expression. The fraction was 
determined as the ratio of area of peaks in the data power 
spectra predicted by the model (Apredicted) to the total 
area of the spectra (Atotal): Accuracy =

Apredicted

Atotal
× 100%. 

The accuracy was determined for all flies that were used 
in our work. On average, our model was able to inter-
pret more than 92 % of the data power spectra. Since this 
analysis is biased towards larger peaks, we also analyzed 
accuracy by calculating what fraction of peaks is inter-
preted by the model. We compared number of peaks 
in the data between 2 and 35  h, that are higher than 
p =  0.005, to number of peaks predicted by the model. 
This approach revealed that our model predicts ~88 % of 
peaks in the data power spectra.

In order to check fit accuracy we compared indi-
vidual peak heights predicted by the analytical expres-
sion [Additional file  1: equation (8)] to the actual peak 
heights in the data power spectra. The fit accuracy was 
analyzed for the wild type flies measured both in light/
dark and constant dark conditions. For each peak in the 
power spectra we calculated the percent error (P.E.) from 
the equation: P.E. = Pdata−Pexpression

Pdata
× 100%, where Pdata 

is a peak height in the data power spectra and Pexpression 
is a peak height predicted by the analytical expression. 
The average percent error was calculated for each peak 
for different light conditions. On average, the error was 
<10 %.

Signal filtering
In our work, we did not filter the raw data. Low pass But-
terworth filtering was employed in some previous studies 
seeking ultradian rhythms in fruit fly and mouse locomo-
tion. However, filtering can dramatically affect the power 
spectrum. For instance, when a low-pass Butterworth 
filter was used on simulated white noise, we found that 

http://www.mathworks.com/matlabcentral/fileexchange/22215-lomb-normalized-periodogram
http://www.mathworks.com/matlabcentral/fileexchange/22215-lomb-normalized-periodogram
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filtering a noisy aperiodic time series can lead to detec-
tion of spurious peaks (Additional file 1: Fig. S9 and asso-
ciated text in Additional file).
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