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Indomethacin treatment prior 
to pentylenetetrazole‑induced seizures 
downregulates the expression of il1b and cox2 
and decreases seizure‑like behavior in zebrafish 
larvae
Patrícia Gonçalves Barbalho1, Iscia Lopes‑Cendes2 and Claudia Vianna Maurer‑Morelli1*

Abstract 

Background:  It has been demonstrated that the zebrafish model of pentylenetetrazole (PTZ)-evoked seizures and 
the well-established rodent models of epilepsy are similar pertaining to behavior, electrographic features, and c-fos 
expression. Although this zebrafish model is suitable for studying seizures, to date, inflammatory response after 
seizures has not been investigated using this model. Because a relationship between epilepsy and inflammation has 
been established, in the present study we investigated the transcript levels of the proinflammatory cytokines inter‑
leukin-1 beta (il1b) and cyclooxygenase-2 (cox2a and cox2b) after PTZ-induced seizures in the brain of zebrafish 7 days 
post fertilization. Furthermore, we exposed the fish to the nonsteroidal anti-inflammatory drug indomethacin prior to 
PTZ, and we measured its effect on seizure latency, number of seizure behaviors, and mRNA expression of il1b, cox2b, 
and c-fos. We used quantitative real-time PCR to assess the mRNA expression of il1b, cox2a, cox2b, and c-fos, and visual 
inspection was used to monitor seizure latency and the number of seizure-like behaviors.

Results:  We found a short-term upregulation of il1b, and we revealed that cox2b, but not cox2a, was induced after 
seizures. Indomethacin treatment prior to PTZ-induced seizures downregulated the mRNA expression of il1b, cox2b, 
and c-fos. Moreover, we observed that in larvae exposed to indomethacin, seizure latency increased and the number 
of seizure-like behaviors decreased.

Conclusions:  This is the first study showing that il1b and cox-2 transcripts are upregulated following PTZ-induced 
seizures in zebrafish. In addition, we demonstrated the anticonvulsant effect of indomethacin based on (1) the inhibi‑
tion of PTZ-induced c-fos transcription, (2) increase in seizure latency, and (3) decrease in the number of seizure-like 
behaviors. Furthermore, anti-inflammatory effect of indomethacin is clearly demonstrated by the downregulation of 
the mRNA expression of il1b and cox2b. Our results are supported by previous evidences suggesting that zebrafish is 
a suitable alternative for studying inflammation, seizures, and the effect of anti-inflammatory compounds on seizure 
suppression.
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Background
Zebrafish experimental models are now widely accepted 
for investigating human diseases, including epilepsy [1–
4]. Importance of this animal model is mainly based on 
its remarkable features combining exceptionally simple 
genetic manipulations, which are ideal for forward and 
reverse genetic investigations, and easy phenotype assess-
ment in a short period of time. Other advantages of this 
fish species are as follows: low maintenance cost, easy 
breeding, high fecundity, external fertilization and devel-
opment, short generation time, and transparency during 
embryonic and larval stage. Furthermore, their genome 
shares approximately 70  % homology with the human 
genome comprising large regions of conserved synteny [5].

Zebrafish exposed to chemoconvulsant drugs mimic 
behavior, electrographic findings, and upregulation of c-
fos in brain regions related to neuronal activation [3, 4, 6]. 
Zebrafish are sensitive to common anticonvulsant drugs; 
therefore, they are widely used for the high throughput 
screening of novel antiepileptic drugs (AEDs) [7–13].

Evidence obtained using hippocampal surgical specimens 
from patients with pharmacoresistant epilepsy and experi-
mental rodent models demonstrated that proinflammatory 
cytokines and inflammatory mediators are upregulated after 
seizures, suggesting that the inflammatory response may 
play an important role in the pathophysiology of epilepsy 
[14–18]. Among the proinflammatory cytokines, interleu-
kin-1 beta (IL-1β) is the most widely investigated. IL-1β 
exerts its action by binding to the IL-1 receptor, which initi-
ates a downstream signaling process that activates the tran-
scription factor nuclear factor-κB (NF-κB). Activation of 
NF-κB leads to the transcription of multiple inflammation-
associated genes, including cyclooxygenase (COX)-2 [19–
22]. COX-2 is a key enzyme responsible for the conversion 
of arachidonic acid into prostaglandins, potent mediators of 
inflammatory signaling [19–22]. One of these prostaglan-
dins converted by COX-2 is prostaglandin E2 (PGE2), which 
upregulates the expression of IL-1β [19–24].

Because a relationship between epilepsy and inflamma-
tion has been established and inflammatory response in 
the pentylenetetrazole (PTZ)-seizure model has not been 
studied, we investigated the expression of the il1b and 
cox2 transcripts in zebrafish after seizures. In addition, 
we measured the effects of indomethacin, a nonsteroi-
dal antiinflammatory drug, on seizure latency, number 
of seizure-like behaviors, and c-fos expression used as a 
marker of neuronal activity [10].

Results
Temporal expression of il1b in the brain of zebrafish larvae 
after PTZ‑induced seizures
Temporal expression profile of il1b was analyzed 0.05, 
1, 6, 12, 24, and 48  h after PTZ-induced seizures by 

comparing the control (CG) and seizure (SG) groups at 
each time point. We found a short-term upregulation of 
i11b mRNA levels 0.05 h (p =  0.02) and 1 h (p =  0.02) 
after seizures (Fig. 1). However, no significant differences 
were found between the CG and SG 6, 12, 24, or 48  h 
after seizures (p > 0.05) (Fig. 1).

The mRNA expression of cox2a and cox2b in the brain 
of zebrafish larvae after PTZ‑induced seizures
Because no significant differences were found in the 
mRNA expression of il1b pertaining to longer time peri-
ods, we chose to evaluate the temporal expression pro-
file of cox2a and cox2b 0.05, 1, and 6 h after PTZ-induced 
seizures. Our results showed that both cox2a and cox2b 
were constitutively expressed in the CG (Fig. 2a–e); how-
ever, after PTZ exposure, the expression pattern of these 
genes showed differences. Animals in the CG and SG 
had similar cox2a mRNA levels after seizures (p > 0.05; 
Fig.  2a–c). However, cox2b mRNA levels were upregu-
lated 0.05 h (p = 0.004) and 1 h (p = 0.008) after seizures 
in the SG compared with the corresponding data in the 
CGs (Fig. 2d, e). No statistical significance was found 6 h 
after seizures (p = 0.27; Fig. 2f ).

Effect of indomethacin administered prior to PTZ on the 
mRNA expression levels of il1b, cox2b, and c‑fos
We used indomethacin at three different concentra-
tions (10, 100, or 307  μM) prior to seizure-induction, 
and we quantified the mRNA levels of il1b, cox2b, 
and cfos 0.05  h after PTZ-induced seizures, when the 
transcript levels of il1b and cox2b are the highest. Our 
results revealed that indomethacin treatment prior 
to PTZ-induced seizures downregulated the mRNA 
expression of il1b, cox2b, and c-fos. As shown in Fig. 3, 
expression of il1b was downregulated by indomethacin 
when we compared the SG with all indomethacin con-
centration tested (p ≤  0.001). In addition, il1b mRNA 
levels in the indomethacin-treated groups were similar 
to that in the CG. No significant difference was found 
between indomethacin treatment groups (Fig.  3). The 
mRNA expression of cox2b was upregulated in the SG 
(p ≤ 0.05) and 10 μM indomethacin group (p ≤ 0.001) 
when both were compared to the CG (Fig.  4). Indo-
methacin treatment at 307  μM significantly down-
regulated the mRNA expression of cox2b compared 
with the SG (p ≤ 0.001; Fig. 4). Comparisons between 
indomethacin treatments groups showed that cox2b 
mRNA levels were downregulated at 100 μM (p ≤ 0.05) 
and 307  μM (p  ≤  0.001) when compared to 10  μM 
(Fig. 4). Transcript level of c-fos was upregulated in the 
SG (p  ≤  0.001) and 10  μM indomethacin pretreated 
group (p ≤  0.05) when compared to the CG (Fig.  5). 
However, 100  μM (p ≤  0.05) and 307  μM (p ≤  0.001) 
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indomethacin treatment downregulated the cfos mRNA 
level when compared to the SG (Fig. 5).

Seizure onset latency and the number of seizure‑like 
behaviors
We evaluated the effect of indomethacin administered 
prior to PTZ-induced seizures by analyzing seizure onset 
latency (stage 3, equivalent to the loss of body posture) 
and the number of seizure-like behaviors. Each larva was 
observed individually under each experimental condi-
tion. In animals pretreated with 10, 100, or 307 μM indo-
methacin, we found a significant increase of onset latency 
(give in minutes) compared with animals in the SG 
(p ≤ 0.001, p ≤ 0.01, and p ≤ 0.01, respectively; Fig. 6). 
Furthermore, all indomethacin concentrations tested 
reduced the number of seizure-like behaviors compared 
with the PTZ treatment alone (10 μM, p ≤ 0.01; 100 μM, 
p ≤ 0.01; and 307 μM, p ≤ 0.001; Fig. 7).

Discussion
It has been demonstrated previously that seizures 
induce the upregulation of IL-1β and COX-2 in clinical 

specimens and experimental models of epilepsy [14–18]; 
however, to reveal the main role of inflammatory mol-
ecules in epilepsy, further investigations are necessary. 
Rodent models of epilepsy are widely used in experimen-
tal research, but due to its several favorable characteris-
tics, zebrafish seizure models can significantly contribute 
to understanding the role of inflammation following sei-
zures. In addition, zebrafish models of human diseases 
are particularly suitable for the pharmacological testing 
of drugs in a convenient way. Immune and inflammatory 
responses in zebrafish are comparable to those found in 
mammals [25–28]; however, to our knowledge, no data is 
available about the expression of inflammatory biomark-
ers such as il1b and cox2 in zebrafish seizure models.

Our results clearly showed that the expression of il1b 
is upregulated shortly after seizures in the larval brain 
(Fig.  1). A previous study of Minami et  al. [29] showed 
that the mRNA levels of IL-1β increase more rap-
idly when the seizure was induced by PTZ compared 
with kainic acid in rodents. Recently, Järvelä et  al. [30] 
reported that the mRNA level of IL-1β is elevated for up 
to 24 h after status epilepticus (SE) induced by kainic acid 

Fig. 1  Temporal expression profile of il1b in the brain of zebrafish after pentylenetetrazole-evoked seizures. Relative quantification of the inter‑
leukin-1 beta (il1b) transcript 0.05, 1, 6, 12, 24, and 48 h after pentylenetetrazole (PTZ)-induced seizures in the brain of zebrafish at 7 days post 
fertilization. Each time-point seizure group was exposed to 15 mM PTZ for 20 min, and their time-matched control groups were handled identically, 
but included exposure to water (n = 5 per group). Data obtained from each seizure group was compared with their respective time-point matched 
control group. Data are presented as mean ± SEM. Statistical analyses were performed using the Mann–Whitney test, and differences were consid‑
ered significant if p < 0.05. Asterisk (*) indicates p ≤ 0.05. CG control group, SG seizure group
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in rodents. Our finding suggests that the transcription 
profile of il1b after PTZ exposure in our zebrafish model 
is similar to that found in a rodent model of PTZ-induced 
seizures.

Because of evolutionary gene duplication, the zebrafish 
genome contains two functional cox2 genes termed as 
cox2a and cox2b [31, 32]. The mRNAs of cox2a and 
cox2b are constitutively expressed in numerous tissues, 
including the zebrafish brain [31]. In this study, we inves-
tigated the inducible expression of both cox2 genes after 
PTZ-induced seizures. Our results revealed a character-
istic transcriptional response in both genes. Expression 
of cox2b, but not cox2a, is upregulated immediately after 
PTZ-induced seizures (0.05 h) and 1 h after the seizure in 
the brain of zebrafish (Fig. 2a, b). It is important to note 
that a study by Ishikawa et al. [31] showed that cox2b is 
more similar in structure to the mammalian cox2 than 
cox2a, which may explain our results [31].

Because the mRNA levels of il1b and cox2b were upreg-
ulated after seizures, we investigated the effect of an anti-
inflammatory drug administered prior to PTZ-induced 
seizures. Our results showed that indomethacin used at 

various concentrations downregulated the expression of 
il1b (Fig.  3). This result is similar to the data obtained 
using the pilocarpine-induced model of epilepsy, wherein 
indomethacin administration prior to pilocarpine injec-
tion downregulates the expression of IL-1β in rats [33]. 
In addition, we showed that indomethacin significantly 
downregulated the mRNA expression of cox2b, but only 
at a concentration of 307 μM.

After showing that indomethacin was able to reduce 
the mRNA levels of il1b and cox2b, we investigated if 
indomethacin reduces the convulsant effect of PTZ 
(Fig.  4). Therefore, we assessed neuronal activity by 
measuring the mRNA expression of c-fos, and we investi-
gated seizure behavior during PTZ exposure by analyzing 
the latency of seizure onset and the number of seizure-
like behaviors, which are both well-known characteristics 
of seizures according to the literature [3]. The c-fos gene 
is a proto–oncogene, which is expressed rapidly and tran-
siently in neurons following neuronal excitation such as 
that in seizures; therefore, expression of c-fos has been 
widely used as a marker for neuronal activity [10]. Bax-
endale et al. [10] showed that c-fos is a sensitive marker 

Fig. 2  cox2a and cox2b expression in the brain of zebrafish after pentylenetetrazole-evoked seizures. Relative quantification of cyclooxygenase 2 a 
and b (cox2a and cox2b) transcripts 0.05, 1, and 6 h after pentylenetetrazole (PTZ)-induced seizures in the brain of zebrafish at 7 days post fertiliza‑
tion. Each time-point seizure group was exposed to 15 mM PTZ for 20 min, and their time-matched control groups were handled identically, but 
included exposure to water (n = 5 per group). Data obtained from each seizure group was compared with their respective time-point matched 
control group. Data are presented as mean ± SEM. Statistical analyses were performed using the Mann–Whitney, and differences were considered 
significant if p < 0.05. One asterisk (*) indicated that p ≤ 0.05; two asterisks (**) indicated that p ≤ 0.01. CG control group, SG seizure group
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for investigating anticonvulsant properties of several 
pharmacological compounds. Our results showed that 
indomethacin downregulated c-fos expression at 100 and 
307 μM (Fig. 5).

Furthermore, indomethacin administered prior to PTZ 
reduced the behavioral signs of seizure because it both 
increased seizure latency (time to reach stage 3, which 
is characterized by the loss of body posture) (Fig. 6) and 
decreased the number of seizure-like behaviors for all 
indomethacin concentrations used in this study com-
pared with the untreated group (Fig. 7).

Although our results clearly suggest that indomethacin 
has significant effects on several parameters related to 
seizure activity, we did not demonstrate that the anticon-
vulsant effect of indomethacin is caused exclusively by its 
anti-inflammatory action on il1b and cox2b; therefore, 
further studies are necessary to address this question.

Conclusions
We have shown for the first time that transcriptional lev-
els of two important inflammatory biomarkers related to 
epilepsy, il1b and cox2, are upregulated in the brain of 
zebrafish after PTZ-induced seizures. Furthermore, we 
found that indomethacin exposure prior to PTZ-induced 

seizures had an anti-inflammatory effect by reducing 
the mRNA expression of il1b, cox2b, and c-fos, and by 
increasing seizure latency and decreasing the number of 
seizure-like behaviors.

Taken together, our results demonstrate that the 
zebrafish seizure model is a valuable alternative model 
for studying the molecular mechanisms of inflammation 
and seizures and for the investigation of anti-inflamma-
tory compounds that may have a potential therapeutic 
effect in seizure suppression.

Methods
Animals
Wild-type zebrafish (adults, larvae, and embryos) were 
maintained according to standard procedures [34]. Adult 
fish were housed in 30–50 L tanks (two animals per liter) 
filled with non-chlorinated water cleared with mechani-
cal and chemical filtration. Adult fish were maintained at 
26 ± 2  °C and in a simulated photoperiod cycle of 10 h 
dark/14 h light. Adult fish were fed twice a day with com-
mercial flake fish food (Tetramin, Tetra, Blacksburg, VA) 
and once a day with artemia; larvae were fed with para-
mecium and artemia twice a day. Fertilized eggs were 

Fig. 3  Indomethacin, administered prior to pentylenetetrazole-
induced seizures, on il1b level in the brain of zebrafish. Relative 
quantification of interleukin-1 beta (il1b) mRNA expression level 
0.05 h after pentylenetetrazole (PTZ)-induced seizures in the brain of 
zebrafish at 7 days post fertilization. Seizure group (SG) comprised 
animals exposed to 15 mM PTZ for 20 min. Indomethacin groups 
(10, 100, and 307 μM) comprised animals that received indometha‑
cin treatment prior to PTZ. Animals in the control group (CG) were 
handled identically, but included exposure to water (no PTZ or 
indomethacin treatments; n = 5 per group). Data are presented as 
mean ± SEM. Statistical analysis was performed by one-way analysis 
of variance (ANOVA) with Bonferroni’s post hoc test. Three asterisks 
(***) indicate that p ≤ 0.001. CG control group, SG seizure group

Fig. 4  Indomethacin, administered prior to pentylenetetrazole-
induced seizures, on cox2b level in the brain of zebrafish. Relative 
quantification of cyclooxygenase 2 b (cox2b) mRNA expression 
level 0.05 h after pentylenetetrazole (PTZ)-induced seizures in the 
brain of zebrafish at 7 days post fertilization. Seizure group (SG) was 
composed of animals exposed to 15 mM PTZ for 20 min. Indometha‑
cin groups (10, 100, and 307 μM) were composed of animals that 
received indomethacin treatment prior to PTZ. Animals in the control 
group (CG) were handled identically, but they were treated with 
water (no PTZ and no indomethacin treatments; n = 5 per group). 
Data are presented as mean ± SEM. Statistical analysis was performed 
by one-way analysis of variance (ANOVA) with Bonferroni’s post hoc 
test. One asterisk (*) indicated that p ≤ 0.05; two asterisks (**) indicated 
that p ≤ 0.01; three asterisks (***) indicated that that p ≤ 0.001. CG 
control group, SG seizure group
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collected after natural spawning. Embryos and larvae 
were housed using Petri dishes filled with water in an 
incubator system at the same temperature and photo-
periods that were used for maintaining the adults. Lar-
vae were staged according to the morphological criteria 
established by Kimmel et  al. [35]. All zebrafish experi-
ments were approved by the Ethical Committee for Ani-
mal Research of the University of Campinas (protocol 
number 3098-1).

Pentylenetetrazole treatment
Larvae at 7 days post fertilization (dpf) were separated in 
the seizure (SG) and control (CG) groups. Larvae in the 
SG were placed in a 24-well plate (one larvae per well) 
containing 15  mM PTZ (Sigma-Aldrich, St. Louis, MO, 
USA), a γ-aminobutyric acid (GABA)A antagonist, for 
20 min [3]. After PTZ exposure, animals were washed to 
eliminate the residual PTZ before being transferred into 
petri dishes. Fish in the CG were handled identically; 
however, water was used instead of PTZ. It is important 
to highlight that each CG or SG presented in this study 
was composed by a different set of animals.

Monitoring of seizure‑like behavior
Seizure-like behavior of the larvae was monitored by 
visual inspection and was classified based on the crite-
ria established in a previous study [3]. To visualize the 
swimming behavior of larvae, we used the Stereomaster® 
microscope (Fisher Scientific, Waltham, MA). Briefly, 
classification was performed according to the following 
criteria: stage 1, increased swimming activity; stage 2, 
rapid circular “whirlpool-like” swimming; and stage 3, sei-
zure-like activity progressing to clonus-like convulsions 
followed by a brief loss of posture. Animals included in 
this study exhibited these well-defined behavioral patterns 
during PTZ exposure. Moreover, we evaluated the latency 
of seizure onset and the number of seizures during PTZ 
exposure. It is important to emphasize that latency was 
determined as the period between the start of PTZ expo-
sure and the appearance of stage 3 seizure-like behavior, 
and the number of seizure-like behaviors was obtained by 
counting all stage 3 seizure-like behaviors displayed.

Treatment with indomethacin and its toxicological 
evaluation
Indomethacin (Sigma-Aldrich, St. Louis, MO, USA) was 
solubilized in 1 % Tris–HCl (pH 8.0) buffer to prepare a 

Fig. 5  Effect of indomethacin exposure, prior to pentylenetetrazole-
induced seizures, on c-fos level of the zebrafish brain. Relative 
quantification of c-fos transcript levels 0.05 h after pentylenetetrazole 
(PTZ)-induced seizures in the brain of zebrafish at 7 days post-
fertilization. Seizure group was composed of animals exposed to 
15 mM PTZ for 20 min. Indomethacin groups (10, 100, and 307 μM) 
were composed of animals that received indomethacin treatment 
prior to PTZ. Animals in the control group were handled identically, 
but included exposure to water (no PTZ or indomethacin treatments; 
n = 5 per group). Data are presented as mean ± SEM. Statistical 
analysis was performed by one-way analysis of variance (ANOVA) with 
Bonferroni’s post hoc test. One asterisk (*) indicated that p ≤ 0.05; two 
asterisks (**) indicated that p ≤ 0.01; three asterisks (***) indicated that 
that p ≤ 0.001. CG control group, SG seizure group

Fig. 6  Effect of indomethacin treatment prior to pentylenetetrazole 
induced seizures on seizure latency. Animals were exposed to 10, 100, 
or 307 μM indomethacin for 24 h prior to pentylenetetrazole (PTZ)-
induced seizures, and latency of the first seizure-like behavior (stage 
3, equivalent to loss of body posture) was evaluated following visual 
observation. The seizure group (SG) was composed of animals that 
were exposed to 15 mM PTZ (n = 6 per group). Data are presented as 
mean ± SEM. Statistical analysis was performed by one-way analysis 
of variance (ANOVA) with Bonferroni’s post hoc test. One asterisk (*) 
indicated that p ≤ 0.05; two asterisks (**) indicated that p ≤ 0.01; three 
asterisks (***) indicated that that p ≤ 0.001
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stock solution. A primary concentration screen assay was 
set up for the toxicological evaluation of indomethacin 
by incubating larvae at six dpf in a 96-well plate (Mil-
lipore, USA). Based on our protocol and the protocol 
described by d’Alençon et  al. (2010) [36], indomethacin 
was tested at seven concentrations (10, 70, 100, 140, 200, 
250, and 307 μM). One larva was used per well, and 12 
larvae were used per treatment/concentration groups. 
After 24  h of incubation in indomethacin, we applied a 
touch stimulus on the plate to evaluate the startle/escape 
response of each larva to identify any signs of locomo-
tor impairment and/or toxicity. None of the tested con-
centrations impaired the startle/escape response of the 
larvae or caused body deformation, exophthalmos, or 
death [9, 10, 37]. This assay was performed in duplicates. 
Then we used 10 and 100  μM indomethacin according 
to a study by d’Alençon et  al. (2010) [36] and 307  μM 
indomethacin (the maximum dose tested in our assay) 
before PTZ-induced seizures, and tested the effect of 
these concentrations on cox2b mRNA expression using 
qPCR. After 24 h of indomethacin exposure, we applied a 
touch stimulus on the plate to evaluate the startle/escape 
response of each larva to identify any signs of locomotor 
impairment and toxicity. The incubation period used for 

the indomethacin treatment was determined based on 
a previous AED screening reported by Afrikanova et al. 
[37]. Zebrafish larvae at six dpf were incubated in 10, 100, 
and 307  μM indomethacin in petri dishes for 24  h, and 
then at seven dpf, they were exposed to 15 mM PTZ for 
20  min as described above. It is important to highlight 
that each indomethacin concentration group presented 
in this study was composed by a different set of animals.

RNA isolation and reverse transcriptase‑PCR
Animals were crioanesthetized and their heads were 
immediately isolated, quickly frozen in liquid nitrogen, 
and stored at −80  °C 0.05, 1, 6, 12, 24, and 48  h after 
PTZ treatment. We pooled 20 larval heads to obtain 
sufficient material for RNA extraction. A total of five 
samples (n = 5 for each time point) were used for each 
group (CG, SG, and indomethacin treatment). Total RNA 
was extracted using TRIzol® (Invitrogen, Carlsbad, CA, 
USA) according to the manufacturer’s instructions, and 
its concentration and quality were determined with the 
EpochTM spectrophotometer (BioTek, Winooski, VT, 
USA) and electrophoresis using agarose gels. One micro-
gram of total RNA was reverse transcribed into cDNA 
using the High Capacity first-strand synthesis system for 
RT-PCR (Invitrogen, Carlsbad, CA, USA) according to 
the manufacturer’s instructions. Reactions without RNA 
were run as negative controls.

Real‑time quantitative PCR
Quantitative PCR was performed using the ABI 7500 
Real Time PCR system (Applied Biosystems, Foster 
City, CA, USA), TaqMan® Universal Master Mix, and 
TaqMan® Gene Expression Assay (Invitrogen, Carlsbad, 
CA, USA) for zebrafish (Table  1). All relative quantifi-
cations were performed in triplicates and were normal-
ized to the housekeeping gene eukaryotic translation 
elongation factor 1 alpha 1, like 1 (eef1a1l1) [38, 39]. 
The mRNA level of each target gene (il1b, cox2a, cox2b, 
and c-fos) was normalized to the expression level of the 
housekeeping gene eef1a1l1 (Table 1). Efficiency of each 
quantitative real time PCR assay was assessed using 
standard curves, which were created by measuring five 
serially diluted cDNA samples in triplicates. Efficiency 
was calculated according to the following formula: 
E =  10[−1/slope]. Relative gene expression quantifica-
tion (RQ) of the SG samples compared with the CG sam-
ples (after normalization to the housekeeping gene) was 
calculated according to the equation RQ =  2 −  ∆∆CT 
described by Livak and Schmittgen [40]. Each reaction 
was run without cDNA as negative control. Data were 
analyzed using the SDS 7500 software (Applied Biosys-
tems) to estimate qPCR efficiency and quantify the rela-
tive gene expression.

Fig. 7  Effect of indomethacin treatment prior to pentylenetetrazole-
induced seizures on the number of seizure-like behaviors. Animals 
were exposed to 10, 100, or 307 μM indomethacin prior to pentyl‑
enetetrazole (PTZ)-induced seizures. Number of seizure-like behaviors 
was evaluated following visual observation during the 20 min of 
PTZ (15 mM) exposure. Seizure-like behavior was registered if the 
zebrafish larvae lost their body posture (stage 3). Data are presented 
as mean ± SEM (n = 6 per group). Statistical analysis was performed 
by one-way analysis of variance (ANOVA) with Bonferroni’s post hoc 
test. One asterisk (*) indicated that p ≤ 0.05; two asterisks (**) indicated 
that p ≤ 0.01; three asterisks (***) indicated that that p ≤ 0.001. SG 
seizure group



Page 8 of 9Barbalho et al. BMC Neurosci  (2016) 17:12 

Statistical analysis
Data are presented as mean values ±  standard error of 
mean (SEM). Statistical analysis was performed using 
the GraphPad Prism version 5.0 (GraphPad Software, 
CA, USA). In all analyses, significance level was set at 
p  ≤  0.05. Statistical comparisons between two groups 
were performed using the Mann–Whitney test. Statis-
tical comparisons between three or more groups were 
performed using one-way analysis of variance (ANOVA) 
with Bonferroni’s post hoc test.
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