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Multilevel analysis quantifies variation 
in the experimental effect while optimizing 
power and preventing false positives
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Abstract 

Background:  In neuroscience, experimental designs in which multiple measurements are collected in the same 
research object or treatment facility are common. Such designs result in clustered or nested data. When clusters 
include measurements from different experimental conditions, both the mean of the dependent variable and the 
effect of the experimental manipulation may vary over clusters. In practice, this type of cluster-related variation is 
often overlooked. Not accommodating cluster-related variation can result in inferential errors concerning the overall 
experimental effect.

Results:  The exact effect of ignoring the clustered nature of the data depends on the effect of clustering. Using simu-
lation studies we show that cluster-related variation in the experimental effect, if ignored, results in a false positive rate 
(i.e., Type I error rate) that is appreciably higher (up to ~20–~50 %) than the chosen α-level (e.g., α = 0.05). If the effect 
of clustering is limited to the intercept, the failure to accommodate clustering can result in a loss of statistical power 
to detect the overall experimental effect. This effect is most pronounced when both the magnitude of the experimen-
tal effect and the sample size are small (e.g., ~25 % less power given an experimental effect with effect size d of 0.20, 
and a sample size of 10 clusters and 5 observations per experimental condition per cluster).

Conclusions:  When data is collected from a research design in which observations from the same cluster are 
obtained in different experimental conditions, multilevel analysis should be used to analyze the data. The use of mul-
tilevel analysis not only ensures correct statistical interpretation of the overall experimental effect, but also provides 
a valuable test of the generalizability of the experimental effect over (intrinsically) varying settings, and a means to 
reveal the cause of cluster-related variation in experimental effect.

Keywords:  Multilevel analysis, False positive rate, Pseudo-replication, Statistical power, Hierarchical data, Clustered 
data, Optimal research design, Experimental effect, Neuroscience
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Background
Nested data are common in neuroscience, where multiple 
observations are often collected in the same cell, tissue 
sample, litter, or treatment facility [1–4]. For example, 
consider a study of differences between wild type (WT) 
and knock-out (KO) animals in the number of docked 
vesicles within presynaptic boutons. As each neuron has 
multiple presynaptic boutons, one can measure the 

number of docked vesicles in multiple boutons of every 
neuron, resulting in multiple measurements within each 
neuron (Fig.  1a). As the measurements are clustered 
within neurons, data resulting from this type of experi-
mental design is referred to as clustered or nested data.1 

1  In the context of RCBD, the term “nested” is used to describe how experi-
mental manipulations or treatments are combined. Specifically, treatments 
are referred to as nested if the various experimental conditions of treatment 
B do not appear with every level of treatment A (e.g., conditions B1 and B2 
are only observed in combination with A1, while B3 and B4 are only observed 
with A2) [23]. In multilevel literature, however, the term nesting is used to 
describe the data. Specifically, nested data are characterized by a hierarchical, 
multi-level structure in which individual observations are clustered, or nested, 
within hierarchically higher organized groups or clusters [10].
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Such data have a hierarchical, or multilevel, structure. In 
the present example, the number of presynaptic boutons 
within a neuron is referred to as the level 1 variable, and 
neuron is the level 2, clustering, variable. In this research 
design, which we refer to as design A, all observations 
from the same cluster belong to the same experimental 
condition (in our example: genotype). Research design A 
has received considerable attention in neuroscience litera-
ture, emphasizing that such clustered data are common in 
neuroscience, and that statistical accommodation of the 
clustered nature of the data is crucial to avoid false posi-
tive results (i.e., inflation of the Type I error rate) [1–6].

Nested data, however, may arise in designs other than 
design A. In what we call research design B, observa-
tions from the same cluster are subjected to different 

experimental conditions. Classical examples are studies in 
which mice from the same litter are randomized over dif-
ferent experimental treatments. Research design B is com-
mon in the clinical and preclinical neurosciences [2, 7], 
but is also employed in the basic neurosciences. Examples 
include studies on the effect of different pharmacological 
compounds, recombinant proteins, or siRNA’s on cellular 
or subcellular features, where the experimental treatment 
is applied to different tissue samples of the same animal 
(Fig. 1b). Other examples include the comparison of mor-
phological features from animals or tissue samples, where 
each animal or tissue sample provides multiple measure-
ments on different morphological features. Examples 
of research design B data in biological neuroscience are 
given in Table 1.

Fig. 1  Graphical illustration of nested data in research design A and B. In design A a, all observations in a cluster are subject to the same experi-
mental condition. An example of this design is the comparison of WT and KO animals with respect to the number of docked vesicles within presyn-
aptic boutons: bouton-measurements are typically clustered within neurons, and all measurements from the same neuron belong to the same 
experimental condition, i.e., have the same genotype. In this hypothetical example, we assume that a single neuron is sampled from each animal. If 
multiple neurons are sampled from the same animal, a third “mouse” level is added to the nested structure of the data. In research design B b, obser-
vations from the same cluster are subject to different experimental conditions. An example of this design is the comparison of neurite outgrowth 
in cells that are treated, or not (control), with growth factor (GF). Here, typically multiple observations from both treated and untreated neurons are 
obtained from, and so clustered within, the same animal
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In neuroscience literature, the discussion of research 
design B has been limited to the case in which the experi-
mental effect is assumed to be the same for all clusters 
[2, 4]. This is a strong assumption, and there is often no 
reason to believe that the experimental manipulation will 
indeed have exactly the same effect in each cluster. Here 
we show that even a small amount of variation in the 
experimental effect across clusters inflates the false posi-
tive rate of the experimental effect, if that variation is not 
accommodated in the statistical model.

The aim of the present paper is to describe the intri-
cacies of research design B, and explain how these can 
be accommodated in multilevel analysis (also known as 
‘hierarchical modeling’, ‘mixed-’ or ‘random effects mod-
els’). In Neuroscience, the research question in nested 
designs is often formulated at the level of the individual 
observations. However, as a result of the clustering, the 
individual observations may show dependency, and this 
dependency needs to be accommodated in the statisti-
cal analysis. First, we briefly discuss research design A. 
Second, we focus specifically on the defining features of 
research design B, and show how these can be accom-
modated in multilevel analysis. Third, we demonstrate 
through simulations that misspecification of the statisti-
cal model for data obtained in design B results either in 
increased Type I error rate (i.e., spurious effects), or in 
decreased statistical power to detect the experimental 
effects. Finally, we discuss the use of cluster-related infor-
mation to explain part of the variation in the experimen-
tal effect, with the aim of increasing statistical power to 
detect the experimental effect, and facilitating the biolog-
ical understanding of variation in this effect.

Research design A
In research design A, multiple observations are collected 
in the same cluster, and only one experimental condition 
is represented in each cluster (Fig.  1a). We recently 
emphasized that design A is common in neuroscience 
research: at least 53 % of research papers published in 5 

high profile neuroscience journals concerned data col-
lected in this design [1]. This design has received some 
attention in the neuroscience literature, focusing specifi-
cally on ways to correctly analyze such data [1–4]. Our 
central message was that multiple measurements per 
cluster (e.g., neuron or mouse) cannot be considered 
independent observations, since measurements from the 
same cluster tend to be more similar to each other than 
to measures from different clusters. This can result in 
systematic differences between clusters, i.e., the mean of 
the dependent variable varies across clusters. Clustering 
implies that this variation exceeds that arising from ran-
dom sampling fluctuation of individual observations 
within a cluster2 (i.e., within cluster variation). Standard 
statistical techniques, such as regression analysis, t test, 
and ANOVA are unsuited to analyze clustered data, 
because these techniques rely on the assumption that all 
observations are independent. Given dependency, they 
produce underestimated standard errors, and so under-
estimated p values. The result is (possibly considerable) 
inflation of the Type I error rate, i.e., false positive rate 
(see [1] for an explanation on, and estimates of, this 
inflation).

There are two ways to handle research design A data. 
One can average across all observations within each clus-
ter and apply standard techniques using these means, 
which are independent observations. Alternatively, 

2  Let mi denote the true mean in the cluster i, and s denote the true within-
cluster standard deviation, assumed to be equal for all clusters (hence no 
subscript). Let mi and si denote the estimated mean and standard devia-
tion in cluster i based on ni observations. The standard error of the mean 
mi equals s.e.(mi)  =  si/√(ni). If all mi in a given experimental condition 
(e.g., the WT mice) are equal across clusters, s.e.(mi) reflects the variation 
in cluster means that is solely due to random sampling fluctuation. In that 
case, the data can be viewed as independent, and can be analyzed using 
standard statistical models. However, due to systematic differences between 
the clusters, clustering often gives rise to variation in mi that exceeds this 
random sampling fluctuation. In the case that data display such (cluster-
related) dependency, multilevel analysis is called for. The systematic dif-
ferences between clusters may be due to known (possibly measured) or 
unknown factors.

Table 1  Examples of research design B nested data in biological neuroscience

Example Individual observa‑
tions from

Clustered in Experimental variable Experimental effect

Effect of a growth factor on neurite outgrowth Neurons Animals Growth factor yes/no Difference in neurite 
outgrowth

Effect of neurite location (axon/dendrite) on  
traveling speed of intracellular vesicles

Intracellular vesicles Neurons Axon or dendrite Difference in travelling 
speed

Effect of neuron type (interneurons/projection neu-
rons) on electrophysiological properties

Neurons Animals Neuron type Difference in electro-
physiological proper-
ties

Effect of spine morphological features on synapse 
compartmentalization

Spines Neurons Morphological type Difference in synapse 
compartmentalization
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avoiding the data reduction associated with such averag-
ing, a multilevel model can be used to accommodate the 
nested structure. In multilevel analysis, the comparison 
of experimental conditions is conducted on the clus-
ter level means, while retaining the distinction between 
the variance within clusters (e.g., differences between 
observations within a mouse) and variance between clus-
ters (e.g., differences between the mice in cluster level 
means). See “Box  1” for a description of the statistical 
multilevel model for design A. Of these two approaches, 
multilevel analysis is preferable as it exploits all available 
information, and confers the greatest statistical power 
[1, 4]. The multilevel model also allows one to obtain 
the intracluster correlation (ICC), which quantifies the 
degree to which measurements from the same cluster 
are more similar to each other than to measures from 
different clusters. The ICC ranges between 0 (there is no 
variation between clusters and thus no dependency) and 
1 (observations within clusters are equivalent and obser-
vations over clusters are different: complete dependency, 
i.e., the value of the observations depends completely on 
cluster-membership; see “Box 1”). The ICC is the stand-
ardized version of the variance between clusters, denoted 
by σ 2

u0, and also referred to as the intercept variance (i.e., 
the variance in the cluster level means).

Having discussed research design A, we now present 
the defining features of research design B nested data, 
and explain how these features can be accommodated in 
multilevel analysis.

Research design B
Design B data differ from design A data in that observa-
tions collected within the same cluster are allocated to 
different experimental settings (Fig. 1b). Hence, both the 

Box 1: Multilevel model for research design A
In the multilevel model for research design A, the 
nested structure of the data is accommodated by spe-
cifically incorporating the variation in cluster means, 
i.e., in the intercepts, in the statistical model. In case 
of a 2-level multilevel model, we have a level 1 model, 
the model of the individual observations, and a level 2 
model, the cluster level model. The level 1 model takes 
on the following form:

i.e., the dependent variable Y for observation i from 
cluster j is predicted from the cluster j specific mean 
value of Y in cluster j, denoted by the cluster-specific 
intercept β0j , and the zero mean residual eij. The vari-
ation in the intercept is specifically modeled in the 
cluster level model. Without incorporating an experi-
mental effect of a cluster level experimental manipula-
tion, the cluster level model is:

where γ00 is the overall mean value of Y calculated 
across all clusters, and u0j is the cluster j specific devia-
tion from that overall mean value. Hence, a distinction 
is made between ‘between cluster variation’, σ 2

u0 (i.e., 
the variance of u0j), and the remaining within clusters 
variation, σ 2

e  (i.e., the variance of eij). Greater variation 

(1)Yij = β0j + eij with eij ∼ N (0, σ
2
e ),

(2)β0j = γ00 + u0j with u0j ∼ N (0, σ
2
u0),

between clusters corresponds to a higher relative simi-
larity of observations from the same cluster. Therefore, 
a standardized measure for dependency is given by the 
intracluster correlation (ICC), which represents the 
degree of relative similarity of observations from the 
same cluster and is obtained by:

i.e., the variance between clusters divided by the total 
variance in the data. This ICC ranges between 0 (there 
is no variation over clusters and thus no dependency) 
and 1 (observations within clusters are equivalent 
and observations over clusters are different: complete 
dependency, i.e., the value of the observations depends 
completely on cluster-membership).

Commonly, designs in neuroscience involve two con-
ditions, e.g., a control and an experimental condition. 
To extend the model to include the effect of an experi-
mental manipulation at the cluster level (i.e., difference 
between the experimental and control condition), and 
(partly) explain the differences in mean between clus-
ters (i.e., different intercepts), we expand the cluster 
level model in Eq. 2 as follows:

where Zj is a (cluster level) dummy coded indicator 
variable that denotes the experimental condition of 
cluster j (e.g., 0 for WT and 1 for KO), γ00 is the overall 
intercept, that denotes the overall mean in the control 
condition given that the indicator variable Zj equals 0 
for the control condition, γ01 is the overall deviation 
of the experimental condition from the control con-
dition given that the indicator variable Zj equals 1 for 
the experimental condition (i.e., from the intercept 
γ00), and u0j is the cluster specific deviation from the 
overall intercept that remains after taking the effect 
of the experimental condition into account. Note that 
if σ 2

u0 =  0, clustering is effectively absent, which ren-
ders the subscript j superfluous. In that specific case, 
the model at the level of the individual observations 
reduces to Yi = γ00 + γ01 ∗ Z + ei, i.e., the standard t 
test written in regression terms.

(3)ICC =
σ
2
u0

σ
2
u0 + σ

2
e

,

(4)β0j = γ00 + γ01 ∗ Zj + u0j with u0j ∼ N (0, σ
2
u0),
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mean value of the dependent variable and the effect of the 
experimental manipulation may vary over clusters (Fig. 2).

Again one can handle the dependency by calculating a 
summary statistic per experimental condition per cluster, 
and then using a standard statistical model (e.g., a paired 
t test or repeated measures ANOVA) to analyze the sum-
mary data. For example, when investigating the effect of a 
growth factor on neurite outgrowth, one could obtain the 
mean neurite outgrowth for the treated and untreated 
cells per mouse, and use these in the statistical analysis. 
However, using such summary statistics is not recom-
mended. Summarizing implies a loss of information, and 
therefore may result in a loss of statistical power to detect 
the experimental effect of interest. In addition, this may 
result in incorrect parameter estimates if the cluster sam-
ple sizes vary (even if the summary statistics are weighted 
by the sample size of the cluster) [8]. Another option in 

analyzing design B data is to take the cluster effect into 
account by including it as a factor in standard regression 
analysis (i.e., fixed effects regression). That is, if there are 
N clusters, the regression analysis would contain an indi-
cator variable that denotes the experimental condition 
of the observation, plus N −  1 indicator variables that 
denote cluster membership (in research design A this is 
not possible: observations from the same cluster all per-
tain to the same experimental condition, as such there 
is not enough information to estimate both the cluster 
effect and the experimental effect). This solution is only 
practical if the number of clusters is small. Besides, it 
restricts the statistical inference to the clusters in the 
study and no other clusters, rendering this approach 
unsuited for generalization to the population [9]. Specifi-
cally, in this approach, the clusters are regarded as fixed, 
and not as a random sample from the general population, 

Fig. 2  Graphical representations of variants of research design B data. Different possible combinations of cluster-related variation in the mean 
value of the control condition (i.e., the intercept; β0j) and cluster-related variation in the experimental effect (β1j), illustrated for 3 clusters of data: no 
cluster-related variation (a), only cluster-related variation in the intercept (b), only cluster-related variation in the experimental effect (c), or cluster-
related variation in both the intercept and the experimental effect (d)
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which limits the generalizability of the obtained research 
results. In addition, this approach does not easily allow 
quantification of the amount of cluster-related variation 
in the experimental effect, which can be informative on 
itself. In multilevel analysis of design B data, the clus-
ters are regarded as random samples from the general 
population. The comparison between experimental con-
ditions is conducted on the experimental condition spe-
cific means within clusters, while including information 
on the variance within clusters (e.g., differences between 
observations within a mouse that remain after taking the 
effect of the experimental effect into consideration) and 
the variance in the experimental effect over clusters (e.g., 
differences between mice in the experimental effect). 
See “Box 2” for a description of the multilevel model for 
design B. Multilevel analysis uses all available informa-
tion, can be used with varying cluster sample sizes, allows 
generalization to the general population, and quantifies 
the amount of cluster-related variation and is therefore 
the preferred statistical approach. In multilevel analy-
sis, cluster-related variation in the experimental effect is 
quantified by the variance of the experimental effect over 
clusters, which we denote by σ 2

u1 (see “Box 2”).

In Additional file  1, a worked example of multilevel 
analysis of research design B data is presented. A detailed 
and accessible explanation of multilevel modeling, 
including details of the statistical analysis, can be found 
in Hox, Goldstein, and Snijders and Bosker [10–12]. 
Note that when performing multilevel analysis, a suf-
ficient number of clusters, and observations per cluster, 
are required to obtain stable and unbiased estimates [13, 
14]. To obtain unbiased estimates of the overall experi-
mental effect and its standard error, a minimum of 10 
clusters and 5 observations per experimental condition 
per cluster is recommended. If one also requires accurate 
estimates of the cluster-related variation in the intercept 
(i.e., the mean value of the control condition, given that 
the indicator variable that denotes the experimental con-
dition equals 0 for the control condition, see “Box  2”) 
and, for research design B specifically, the experimental 
effect, a minimum of 30 clusters is recommended. Hence, 
careful planning of the research design is required when 

Box 2: Multilevel model for research design B
To accommodate possible variation in the effect of the 
experimental manipulation across clusters, the model 
at the level of the individual observations given in Eq. 1 
is extended as follows:

i.e., the experimental effect, denoted by β1j, and the 
variable Xij indicating the experimental condition 
of observation Yij, are now defined at the individual 
observational level instead of on the cluster level 
(hence the use of X instead of Z). The experimen-
tal effect β1j now accounts for systematic differences 
between observations within a cluster, rather than 
systematic differences between observations in differ-
ent clusters. How much observations within a cluster 
differ between experimental conditions can vary over 
clusters (denoted by the subscript j in β1j), resulting in 
a cluster level model for both the intercept β0j , and the 
cluster-dependent experimental effect β1j:

i.e., the experimental effect β1j, just like the intercept 
β0j , is composed of an overall experimental effect 
across all clusters γ10, and a cluster specific deviation 

(5)Yij = β0j + β1j ∗ Xij + eij with eij ∼ N (0, σ
2
e ),

(6)β0j = γ00 + u0j , and

(7)β1j = γ10 + u1j , with

(

u0j
u1j

)

∼ N

(

σ
2
u0 σ

2
u0,u1

σ
2
u0,u1 σ

2
u1

)

from that overall experimental effect, u1j. The variance 
of the experimental effect over clusters is noted by σ 2

u1 
(i.e., the variance of u1j). In this extended model, the 
parameter β0j represents the cluster-specific intercept, 
which is now interpreted as the mean of the observa-
tions belonging to the control condition of that par-
ticular cluster (i.e., given that the indicator variable Xij 
equals 0 for the control condition). β1j, in turn, repre-
sents the cluster-specific deviation from β0j of those 
observations in the cluster belonging to the experimen-
tal condition. The variance of the cluster-dependent 
experimental effect σ 2

u1 is often referred to as the slope 
variance, as β1j is often referred to as the cluster-spe-
cific slope parameter.

Note that models that include both intercept vari-
ance and slope variance may include a covariance 
between the random intercept and random slope noted 
by σ 2

u0,u1 (where the term “random” simply implies that 
the intercept and slope vary across clusters). When 
comparing a control and an experimental condition 
using a 0/1 dummy coded indicator, the intercept rep-
resents the mean value of the dependent variable Y 
of the control condition, and the slope represents the 
deviation from this mean value for the experimental 
condition. In this case a positive covariance between 
intercept and slope implies that higher values in the 
control condition coincide with larger experimental 
effects, while a negative covariance implies that higher 
values in the control condition coincide with smaller 
experimental effects. An example of negative covari-
ance is when cells whose neurons show a relatively 
large value for neurite outgrowth in the control condi-
tion, tend to show a smaller effect of the growth factor.
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dealing with nested data, as multilevel analysis requires 
sufficient observations on both levels. When the number 
of clusters is small (e.g., <10), but the number of obser-
vations within each cluster is large (e.g., >300), Bayes-
ian estimation methods are an alternative, as these have 
proven to yield less biased estimates than maximum like-
lihood approaches in this specific instance [15]. Another 
option would be to use fixed effects regression, in which 
the obtained research results are only valid for the clus-
ters in the study.

In the few methodological papers in the neuroscience 
literature that discussed the analysis of research design 
B data, the focus has been on the special case that the 
experimental effect is invariant over clusters [2, 4]. This 
is a strong assumption, which may not hold. Hence, the 
possibility that the experimental effect varies over clus-
ters should be taken into account in the statistical model. 
Intrinsic biological variation, and small differences in the 
experimental conditions or measurement procedures 
all may cause differences between clusters, and conse-
quently differences in the experimental effect over clus-
ters. For instance, in the growth factor experiment, not 
all experiments may be performed using the same batch 
of growth factor, which can result in variation in the 
experimental effect.

The failure to accommodate variation in the intercept 
(i.e., mean value of the control condition), and/or experi-
mental effect over clusters (i.e., dependency) in research 
design B data can result in incorrect inferences concern-
ing the experimental effect. The exact consequence of 
ignoring the dependency depends on the effect of clus-
tering. First, if in research design B data clustering is a 
source of variation in the intercept, but not a source of 
variation in the experimental effect (Fig. 2b), the failure 
to accommodate clustering (e.g., by applying a standard 
statistical model like regression or t test), may result in a 
loss of statistical power to detect the experimental effect3 
[4, 8]. A correctly specified multilevel model does not 

3  In a previous paper specifically on design A data, we showed that not 
accommodating variation in the intercept results in an increased false posi-
tive rate. To avoid confusion on the effect of not accommodating variation 
in the cluster-related intercept, let us note the following. In design A data, 
the experimental effect is at the cluster level and thus explains systematic 
differences between clusters. In this case, variation in the intercept thus 
represents variation in the outcome of one of the experimental conditions. 
When this variation in the outcome is not taken into account, this results 
in a too precise estimate of the experimental effect (i.e., downward biased 
standard error), and hence an increased false positive rate. In design B data 
however, the experimental effect is at the level of the individual observa-
tions, and is thus explains systematic differences within clusters and hence 
determined within each cluster separately. Variation in the intercept (i.e., 
the mean value of the control condition) here represents fluctuations that 
do not influence the size of the experimental effect within each cluster. Not 
accommodating variation in the intercept in research design B thus results 
in a lower signal to noise ratio, hence decreased statistical power, instead of 
a higher false positive rate.

incur this loss of power because it effectively accommo-
dates the otherwise unexplained variation in the inter-
cept over clusters, thus providing a better signal-to-noise 
ratio. Below, we examine the loss in statistical power that 
may arise when conventional methods are used to ana-
lyze research design B data given an experimental effect 
that does not vary over clusters. We express this loss in 
power as a function of various characteristics of the data.

Second, if clustering is a source of variation in the 
experimental effect (Fig. 2c, d), standard errors obtained 
in standard statistical models and multilevel analysis in 
which random effects are incorrectly specified, are likely 
to be underestimated [8]. This results in a downward bias 
in p values, and consequently an inflated Type I error 
rate (i.e., rate of false positives) that exceeds the nominal 
α-level (e.g., α = 0.05). However, the degree of inflation 
produced in these models, and variation in the Type I 
error rate as a function of variation in the experimental 
effect over clusters, has not been demonstrated before. 
Moreover, little is known about the effect on the Type 
I error rate associated with standard statistical models 
and misspecified multilevel analysis, given systematic 
variation in both experimental effect and the intercept 
(Fig. 2d).

The aim of this paper is to illustrate by means of simu-
lation how misspecification of the statistical model for 
research design B data affects the false positive rate and 
statistical power.

Methods
We use randomly generated (i.e., simulated) datasets to 
illustrate the effects of cluster-related variation in design 
B data on results of various statistical tests. We varied 
the magnitude of the experimental effect, the amount of 
cluster-related variation in the intercept and in the exper-
imental effect, and the sample size. We determined how 
these variables influenced the obtained results. We con-
sidered a design with two experimental conditions, which 
we refer to as the control and the experimental condition. 
The generated datasets were analyzed using the following 
four statistical methods: a t test on the individual obser-
vations (i.e., modeling the data as shown in Fig.  2a), a 
paired t test on the experimental condition specific clus-
ter means, a multilevel model on the individual observa-
tions that only accommodates cluster-related variation in 
the intercept (i.e., modeling the data as shown in Fig. 2b), 
and a multilevel model on the individual observations 
that accommodates cluster-related variation in both the 
intercept and the experimental effect (i.e., modeling the 
data as shown in Fig. 2d). Note that the standard statis-
tical methods on summary statistics produces correct 
parameter estimates only if the (sub)sample sizes are 
equal over clusters and experimental conditions [8]. An 
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overview of the parameter settings for each simulation 
study is provided in Table 2.

First, we illustrate the effect on the statistical power 
to detect the overall experimental effect in the specific 
case that variation in the intercept is absent, or present 
but not accommodated, and cluster-related variation in 
the experimental effect is absent (i.e., study 1a and 1b in 
Table 2). That is, we ask: if data is generated according to 
Fig. 2a, b, how does the statistical power compare across 
the four statistical methods (i.e., the t test on the individ-
ual observations, the paired t test on summary statistics, 
and the two types of multilevel analysis)?

Second, we illustrate the effects of the presence of clus-
ter-related variation in the experimental effect, in com-
bination with either absent or present cluster-related 
variation in the intercept, on the false positive rate of the 
experimental effect (i.e., study 2a and 2b in Table 2). That 
is, we ask: if data is generated such that overall, i.e., taken 
over all clusters, the experimental manipulation has no 
effect, but the data includes cluster-related variation in 
the experimental effect, what is effect on the false posi-
tive rate? We illustrate this in case that the data includes 
no cluster-related variation in the intercept (Fig.  2c), or 
does include cluster-related variation in the intercept 
(Fig.  2d), and compare the false positive rate across the 
four statistical methods (i.e., the t test on the individual 
observations, the paired t test on summary statistics, and 
the two types of multilevel analysis).

For all scenarios, we generated 10,000 datasets. To 
establish statistical power in studies 1a and b, and 
the empirical false positive rate in studies 2a and 
2b, we counted the number of times that the overall 

experimental effect was found to be statistically signifi-
cant given α =  0.05. The datasets were generated such 
that the experimental effect is expressed in terms of the 
effect size d (obtained by difference between experimen-
tal and control condition/within cluster standard devia-
tion σe [16]), where we considered the effects 0.20, 0.50, 
and 0.80 to be small, medium, and large, respectively 
[17]. Condition was dummy coded 0 (control) and 1 
(experimental), such that the amount of cluster-related 
variation in the experimental effect σ 2

u1 could be inter-
preted according to the guidelines of Raudenbush and 
Liu [7]. Accordingly, σ 2

u1 values of 0.05, 0.10, and 0.15 are 
considered small, medium, and large, respectively.

To understand the amount of variation in the experi-
mental effect, consider a medium experimental effect 
of d =  0.50. If the variation in the experimental effect 
is small, i.e., σ 2

u1 =  0.05, this corresponds to a standard 
deviation of ~0.22. Assuming normally distributed clus-
ter specific deviations from the overall effect size, β1j, 
~95 % of the cluster-specific experimental effects would 
lie between ~0.07 and ~0.93 (i.e., 0.50 − 1.96 × 0.22 and 
0.50 + 1.96 × 0.22, respectively). Using the dummy cod-
ing 0 and 1 also ensures that the intercept variance equals 
the cluster-related variation in the intercept of the con-
trol condition in case that both the intercept and the 
experimental effect show cluster-related variation. The 
covariance between the intercept and the experimental 
effect was set to zero in all simulations.

All simulations were performed in R 2.15.3 [18], and 
multilevel models where fitted using the R package lme4 
[19]. The R-code is available upon request from the cor-
responding author.

Table 2  Parameter settings used to generate the simulated datasets

The simulations with no cluster-related variation in the experimental effect (studies 1a and 1b; σ 2
u1

 = 0) investigate the effect on the statistical power to detect the 
experimental effect in case that variation in the intercept is present but not accommodated. Hence, in studies 1a and 1b, the magnitude of the overall effect of the 
experimental manipulation, expressed by effect size d, exceeds zero (d > 0). The simulations including cluster-related variation in the experimental effect (studies 
2a and 2b; σ 2

u1
 > 0) investigate the effect on the false positive rate in case that this variation in the experimental effect is not accommodated in the statistical model. 

Hence, in studies 2a and 2b, the magnitude of the overall effect of the experimental manipulation equals zero (d = 0)

ICC intracluster correlation, denoting the extent of dependency in the data, N number of clusters, nc number of observations per experimental condition per cluster

Variation in intercept (ICC) Study Aim of study σ
2

u1
ICC d N nc

Variation in experimental effect (σ 2
u1)

 Absent Absent 1a Statistical power 0.00 0.00 0.20 10 5–50

0.50 30

Present 1b Statistical power 0.00 0.25 0.20 10 5–50

0.50 0.50 30

 Present Absent 2a False positive rate 0.025 0.00 0.00 50 5–105

0.050

0.150

Present 2b False positive rate 0.025 0.50 0.00 50 5–105

0.050

0.150
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Results and discussion
Ignoring cluster‑related variation can result 
in interpretational errors
Our simulation results showed that the failure to accom-
modate the cluster-related variation in either intercept or 
slope (i.e., in either the mean value of the control condi-
tion or the experimental effect) can result in interpreta-
tional errors. A general overview of all results is given in 
Table  3. Below, we discuss the results of studies 1a and 
1b (i.e., no variation in the experimental effect) and stud-
ies 2a and 2b (i.e., variation in the experimental effect) in 
detail.

Ignoring variation in the intercept in design B data can 
decrease statistical power
The obtained results are equal for the multilevel model 
that only includes variation in the intercept, and the mul-
tilevel model that includes variation in both the intercept 
and the experimental effect. Therefore, we do not differ-
entiate between the two types of multilevel analysis in 
this section.

In case of design B data that includes no cluster-related 
variation in the intercept or experimental effect (i.e., 
study 1a), conventional statistical analysis (i.e., a t test) 
on individual observations is equally powerful as multi-
level analysis, but using multilevel analysis is more pow-
erful compared to conventional statistical analysis (i.e., a 
paired t test) on summary statistics (Fig.  3). The loss in 

statistical power when using conventional statistical anal-
ysis on summary statistics is only present when the num-
ber of clusters is small (i.e., N = 10).

Analyzing design B data that only includes cluster-
related variation in the intercept (i.e., study 1b) using 
conventional statistical analysis (e.g., a t test on individual 
observations or a paired t test on experimental condition 
specific cluster means) sometimes results in a loss of sta-
tistical power. Compared to using a t test on individual 
observations, the difference in statistical power is great-
est when both the number of clusters and the magnitude 
of the experimental effect are small, and the amount of 
cluster-related variation in the intercept is large (Fig. 3). 
For example, in case of substantial cluster-related vari-
ation in the intercept giving rise to ICC = 0.50, using a 
t test on individual observations is ~25  % less powerful 
than multilevel analysis, given 10 clusters and an effect 
size of 0.20. In case that the overall experimental effect 
is medium (i.e., d = 0.50), multilevel analysis only results 
in more statistical power given substantial cluster-related 
variation in the intercept (i.e., ICC =  0.50), and a small 
number of clusters and small number of observations 
per experimental condition. Compared to using a paired 
t  test on experimental condition specific cluster means, 
the loss in statistical power compared to multilevel analy-
sis is only present when the number of clusters is small 
(i.e., N =  10), and does not depend on the amount of 
cluster-related variation in the intercept.

Table 3  Consequences of not accommodating cluster-related variation in research design B

The results of four statistical tests to detect the experimental effect are compared with respect to (1) statistical power to detect the (overall) experimental effect 
(when variation in the experimental effect is absent) and (2) false positive rate (when variation in the experimental effect is present). Fitted statistical models are a 
t test on individual observations (T test ind. obs), a paired t test on the experimental condition specific cluster means (T test summary st.), a multilevel analysis that 
does not accommodate the variation in the experimental effect but does accommodate variation in the intercept (Multilevel analysis I), and a multilevel analysis that 
accommodates both variation in the intercept and in the experimental effect (Multilevel analysis II)
a  In case that variation in the experimental effect is absent, all fitted statistical models result in a false positive rate that does not exceed the nominal α specified by 
the user (i.e., correct or slightly conservative, see e.g. [4, 8])

Statistical test Variation in intercept

Absent Present

Statistical powera

Study 1a Study 1b

Variation in experimental effect

 Absent T test ind. obs.
T test summary st.
Multilevel analysis I
Multilevel analysis II

Correct
Decreased power
Correct
Correct

Decreased power
Decreased power
Correct
Correct

False positive rate

Study 2a Study 2b

 Present T test ind. obs
T test summary st.
Multilevel analysis I
Multilevel analysis II

Increased false positive rate
Correct
Increased false positive rate
Correct

Increased false posi-
tive rate

Correct
Increased false posi-

tive rate
Correct



Page 10 of 15Aarts et al. BMC Neurosci  (2015) 16:94 

The occasionally observed increase in loss of power 
as function of increasing number of observations per 
experimental condition per cluster is due to the fact 
that multilevel analysis gains in power with increasing 
number of observations per experimental condition per 
cluster. The observed decrease in loss of power when the 
number of observations per experimental condition per 
cluster increases, is due to the fact that multilevel analy-
sis approximates the maximum power of 100 %, and thus 
the difference in statistical power between multilevel 
analysis and conventional analysis methods becomes 
smaller. The actual statistical power of multilevel analy-
sis given no cluster-related variation in the experimen-
tal effect, an effect size d of 0.20 or 0.50, 10 clusters, and 
increasing numbers of observations per experimental 
effect per cluster is provided in Fig. 5b (solid line; note 
that the ICC does not influence the power of multilevel 
analysis to detect the overall experimental effect in case 
of design B data, and as such does not feature in this 
figure).

In summary, the failure to take into account the hierar-
chical nature of data or using summary statistics, results 
in a loss of power to detect the experimental effect, espe-
cially when both the number of clusters and the overall 
effect are small. Neuroscience studies often report small 
effects, and may be underpowered due to small sample 
size [20]. Multilevel analysis of research design B data 
can increase statistical power compared to conventional 
analyses, unless of course the statistical power of the con-
ventional analysis approaches 1.

Ignoring variation in the experimental effect increases the 
false positive rate
Given clustering with respect to the experimental effect, 
the use of a statistical model on individual observations 
that does not accommodate this variation results in an 
inflated false positive (i.e., Type I error) rate. First, when 
variation in the intercept is absent (i.e., study 2a), ignor-
ing variation in the experimental effect results in an 
actual false positive rate as high as ~20–~50 % (Fig. 4a), 
depending on the number of observations per cluster and 
the amount of variation in the experimental effect. Spe-
cifically, if the overall experimental effect is zero, both a 
conventional t  test and misspecified multilevel analysis 
(i.e., one that ignores variation in the experimental effect 
but does model variation in the intercept), yield similarly 
inflated Type I error rates (lines fully overlap in Fig. 4a). 
Even a very small amount of cluster-related variation in 
the experimental effect (i.e., σ 2

u1 =  0.025) can results in 
a Type I error rate of ~20 % if it is not accommodated in 
the statistical model. In summary, the failure to accom-
modate cluster-related variation in the experimental 
effect results in a substantial inflation of the Type I error 
rate, and this inflation is considerable even when varia-
tion in the experimental effect is small.

Second, when variation is present in both the intercept 
and the experimental effect (i.e., study 2b), accommodat-
ing only the cluster-related variation in the intercept (i.e., 
a misspecified multilevel analysis), or not accommodat-
ing cluster-related variation at all (i.e., conventional t test) 
again results in an inflated Type I error rate (Fig. 4b). If 

Fig. 3  Use of conventional analysis methods on design B data can result in a loss of power. Using conventional analysis methods to model design 
B data that includes cluster-related variation in the intercept and no cluster-related variation in the experimental effect (σ 2

u0 >0 and σ 2
u1 = 0; study 

1b) results in a loss of statistical power compared to using a multilevel model. The presented results are equal for the multilevel model that only 
includes variation in the intercept, and the multilevel model that includes variation in both the intercept and the experimental effect. Fitted con-
ventional analysis methods were a a t test on individual observations and b a paired t test on the experimental condition specific cluster means. The 
loss in statistical power is overall greatest when both the number of clusters and effect size d are small and the cluster-related variation in the inter-
cept is considerable. In case that the cluster-related variation in the intercept and in the experimental effect both equal zero (that is, ICC = σ 2

u1 = 0; 
study 1a), using a t test on individual observations is equally powerful as multilevel analysis, but using multilevel analysis is more powerful com-
pared to a paired t test on summary statistics. The actual statistical power of multilevel analysis given σ 2

u1 = 0, = 0.20 or 0.50, N = 10, and increasing 
numbers of observations per experimental effect per cluster is given in Fig. 5b, solid line
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the variation in the intercept is large (ICC =  0.50), the 
Type I error rate increases up to approximately 35  % 
when using a conventional t test. When using a multilevel 
analysis that only accommodates cluster-related variation 
in the intercept, the inflation in the Type I error increases 
up to approximately 50  %. In summary, the substantial 
inflation of the Type I error rate that arises if cluster-
related variation in the experimental effect is not accom-
modated arises irrespective of the presence of variation 
in the intercept.

Accommodating cluster-related variation in the experi-
mental effect by either using correctly specified multi-
level analysis or using conventional models on summary 
statistics (i.e., a paired t  test on the experimental con-
dition specific cluster means), does result in a correct 
Type I error rate (i.e., study 2a and 2b). See “Box 3” for a 
detailed explanation of why ignoring cluster-related vari-
ation in the experimental effect results in an increased 
false positive rate.

Fig. 4  Ignoring variation in the experimental effect results in inflated false positive (i.e., Type I error) rate. Inflation of the Type I error rate already 
occurs when a small amount of variation in the experimental effect (e.g., σ 2

u1 = 0.025) remains unaccounted for in the statistical model, and occurs 
both when the intercept (i.e., mean value of the control condition) is invariant over clusters (a; ICC = 0; study 2a), and when the intercept varies 
substantially over clusters (b; ICC = 0.50; study 2b). In panel a, the lines depicting conventional analysis (i.e., t test on individual observations) and 
misspecified multilevel analysis completely overlap. Using a paired t test on the experimental condition specific cluster means results in a correct 
Type I error rate. In panel b, the lines depicting the paired t test and the correctly specified multilevel analysis completely overlap

where N denotes the number of clusters, and σ 2
e  

denotes the residual error variance. In the t test, in 
contrast, the standard error of the experimental effect, 
denoted as SEβ1 , is

Comparing Eqs. 8 and 9, we see that ignoring non-zero 
cluster-related variation in the experimental effect, σ 2

u1, 
results in an underestimation of SEβ1, and consequently 
in downward biased p values. The degree of underes-
timation depends on the number of observations per 
cluster nc, and on the amount of cluster-related varia-
tion in the experimental effect, σ 2

u1.Important to note 
is that, first, Eqs. 8 and 9 hold in the case of standard-
ized data [i.e., both the experimental variable X and the 
outcome variable Y are standardized such that ~N(0,1)] 
and a balanced design (i.e., the number of observations 
per condition per cluster is equal over clusters). Sec-
ondly, in Eq. 9, σ 2

e  is actually a composite of all sources 
of variation that remain unexplained in the conven-
tional analysis model, i.e., the actual residual error 
variance, but also the intercept variance and the vari-
ance in the experimental effect over clusters. Thirdly, 
the intercept variance σ 2

u0 plays no role in Eq.  8. This 
explains why the Type I error rate of the misspecified 
multilevel model in simulation studies 2a and 2b (i.e., 
simulated data that includes only cluster-related varia-
tion in the experimental effect, and simulated data that 
includes both cluster-related variation in the intercept 
and experimental effect, respectively, see Table  2 for 
exact parameter settings) is unaffected by the value of 

(9)SEβ1 =

√

σ
2
e

nc ∗ N
.

Box 3: Inflation of the false positive rate 
in research design B
By considering the standard error of the overall experi-
mental effect in multilevel analysis, SEγ10, we can clarify 
why increasing cluster-related variation in the experi-
mental effect σ 2

u1 and/or increasing sample size per 
cluster nc (given that σ 2

u1 > 0) results in an inflated Type 
I error in conventional analysis (i.e., t test) on individ-
ual observations in nested data. In multilevel analysis, 
(adjusted from Eq. 13 in [7])

(8)SEγ10 =

√

nc ∗ σ 2
u1 + σ

2
e

nc ∗ N
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Explaining part of the variation in the experimental effect: 
increasing both theoretical insights and power
The simulation studies have shown that ignoring cluster-
related variation in the intercept (σ 2

u0) and experimental 
effect (σ 2

u1) may result in incorrect inference concern-
ing the experimental effect. However, it is important 
to emphasize that these variance terms are not merely 
“noise” i.e., nuisance parameters: they can advance our 
biological understanding, and can be of practical interest. 
Here, we focus specifically on the information that can be 
obtained from cluster-related variation in the experimen-
tal effect.

Variation in the experimental effect is informative 
about the generalizability of the experimental effect [7]: 
is the impact of the experimental manipulation similar 
across (biologically intrinsic) different settings? In some 
instances, sources of cluster variation may be difficult to 
measure. For example, when investigating a feature at the 
cellular level in neurons taken from mouse embryos, it 
is conceivable that not all neurons were harvested at the 
exact same embryonic age, resulting in different levels of 
neuron maturation. The variation in neuronal maturation 
may in turn influence the magnitude of the effect of the 
experimental manipulation. In this case, multilevel mod-
eling accommodates the variation in outcome due to dif-
ferent levels of neuron maturation, despite the fact that 
neuron maturation is not explicitly measured. An added 
advantage arises when possible sources of cluster-related 
variation can be recorded: they can be used to (partly) 
explain the cluster-related differences in the experimental 
effect by including them in the model (see below). As such, 
recorded sources of cluster variation can facilitate the 
understanding of the conditions in which the experimen-
tal manipulation does or does not have an effect, and thus 
of the generalizability of this effect. For instance, suppose 
pregnant mice are administered fluoxetine in their food, 
which induces life-long cortical abnormalities in the pups. 
The food intake, and therefore drug intake, which may vary 
between mice, can easily be measured. If we are interested 
in a certain drug B that is hypothesized to counteract these 
developmental changes upon treatment of the pups, we 
can administer drug B to half of the pups in each nest, and 
use the remaining pups as controls. Besides the counterac-
tive effect of drug B on drug A, we may investigate whether 
a measure of food (i.e., fluoxetine) intake in the mothers 
explains some of the variation observed in the effect of 
drug B on the (severity of the) cortical abnormalities. In 

this case, we might learn that the extent to which drug B 
can alleviate the detrimental effects of fluoxetine depends 
on the level of fluoxetine exposure.

Explaining variation in the experimental effect by one 
or more variables is achieved by adding those variables 
as covariates to the model. The broad definition of a 
covariate is a variable that is used to adjust the predicted 
outcome Y for differences associated with the covariate, 
which is measured before (or simultaneous with) the out-
come variable Y, and correlates with Y [21]. Note that in 
order to (partly) explain the cluster-related differences in 
the experimental effect, one needs a cluster-level covari-
ate, like food intake of the mother mouse in the current 
example.

Besides the fact that explaining part of the variation 
in the experimental effect can advance our biological 
understanding, adding a relevant covariate to the sta-
tistical model can also increase the statistical power to 
detect the overall experimental effect. Specifically, by 
(partly) accounting for the cluster-related variation in the 
experimental effect, the remaining unexplained cluster-
related variation in the experimental effect σ 2

u1 decreases. 
As shown in Eq. 8 in “Box 3”, a decreased σ 2

u1 results in 
a decreased standard error of the overall experimental 
effect, and hence an increased statistical power to detect 
this effect. As such, adding a cluster-level covariate to the 
model can be of practical interest, as it can boost statis-
tical power without, or additional to, increasing sample 
size.

There are, however, some considerations regarding the 
inclusion of covariates. First, in case that the statistical 
model includes covariates, the estimated value, and hence 
the interpretation, of the experimental effect is condi-
tional on the covariates. In our example, the research 
question would change from “Does drug B counteract 
the cortical abnormalities caused by prenatal fluoxetine 
exposure?” to “When correcting for relative differences 
in prenatal fluoxetine exposure, does drug B counter-
act cortical abnormalities caused by prenatal fluoxetine 
exposure?”. Note that when the covariate is a design vari-
able, e.g., batch number, conditional interpretation of the 
experimental effect is biologically no different from the 
unconditional interpretation: we simply correct for meas-
urement noise that we are not interested in.

Second, if a relevant covariate is not measured rou-
tinely within the experimental setup, but needs to be 
measured specifically, this may involve an increase in 
research costs. If the sole reason to include the covariate 
is to increase statistical power (and not to facilitate bio-
logical understanding), one needs to consider the return 
in power of these costs [10]. Also, how much power is 
gained by decreasing the unexplained variation in the 
experimental effect depends on the allocation of sample 

the ICC. That is, the obtained Type I error rate of the 
misspecified multilevel model is equal for the simula-
tion studies that do and do not include cluster-related 
variation in the intercept (see Fig. 4a, b).
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sizes over clusters, and on number of observations per 
cluster (for example, when comparing σ 2

u1  =  0.05 and 
0.15 in panel b of Fig. 5, one can see that the difference in 
power for σ 2

u1 = 0.05 and 0.15 is smaller when the num-
ber of observations per cluster is smaller, and larger when 
the number of observations per cluster is larger). The 
program PinT [22] can be used to evaluate how much a 
particular covariate increases power given the amount 
of explained variation in the experimental effect and the 
allocation of sample sizes. In addition, one has to keep 
in mind that sample size can put a limit on how many 
parameters, hence covariates, can be added to the statis-
tical model. So careful planning of the study, including 
the intended covariates, is advised.

Third, one can also attempt to increase power by 
including a covariate at the level of the individual 
observations. A covariate at the level of the individual 
observations can increase statistical power if it (partly) 
explains why observations within a condition within a 
cluster vary with respect to the dependent value. This 
decreases the residual error variance σ 2

e  of the model, 
and hence increases the statistical power to detect the 
overall experimental effect. For example, when perform-
ing siRNA-mediated knockdown in neurons, one could 
measure knockdown efficiency for each neuron besides 
the neuronal measurement of interest. One can observe 
in Eq. 8 in “Box 3”, however, that a reduced (unexplained) 
variation in the experimental effect σ 2

u1 has a greater 
effect on decreasing the estimated standard error of the 
overall experimental effect than a reduced residual error 
variance σ 2

e . Therefore, including a covariate at the indi-
vidual observation level to increase statistical power is 
only advisable if the covariate is expected to explain a 

considerable amount of variation within condition within 
clusters.

Maximizing power by optimally allocating sample sizes
In conventional analyses, ensuring sufficient statisti-
cal power to detect the experimental effect of interest is 
usually accomplished by calculating the required total 
number of observations to collect. When it comes to sta-
tistical power in multilevel analyses, however, one has to 
determine the sample size at two levels: the sample size at 
the individual level, i.e., the number of observations per 
cluster, and the sample size at the cluster level, i.e., the 
number of clusters. The number of observations per clus-
ter, and the number of clusters, do not affect statistical 
power equally, and are often not equal in costs. Hence, 
a key question is how to optimally allocate observa-
tions over clusters, balancing both power and costs. An 
excellent account of power in multilevel analysis in case 
of design B and a cost-benefit analysis of power is pro-
vided in [7]. For a balanced (i.e., the number of observa-
tions per condition are equal both between conditions 
and between clusters) 2-level multilevel model without 
covariates, we provide a brief summary in Additional 
file 2, which includes an explanation of how to calculate 
the estimated power for a given number of observations 
per cluster n, number of clusters N, and choices of other 
key parameters in the model.

In design B, a larger number of observations per clus-
ter provides precision on the estimate of the experi-
mental effect within a cluster, while a larger number of 
clusters provides precision on the overall experimental 
effect. Hence, the power to detect the overall experi-
mental effect benefits most from increasing the number 

Fig. 5  Power of multilevel analysis to detect the overall experimental effect in research design B. Power is depicted in nine conditions (effect size d 
of 0.20, 0.50, or 0.80, and cluster-related variation in the experimental effect of 0.00, 0.05, and 0.15) and as function of the number of clusters (a) or 
the number of observations per cluster per condition (b). In both a and b, two experimental conditions are compared, using a balanced research 
design. As the cluster-related variation in the intercept in research design B does not influence the statistical power to detect the overall experi-
mental effect (see Eq. 8 in “Box 3”), the ICC does not feature in this figure. In a, the number of observations is held constant at 5 observations per 
condition in each cluster; in b, the number of clusters is held constant at 10. Evidently, the number of clusters, and not the number of observations 
per cluster, is essential to increase the statistical power to detect the experimental effect
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of clusters N. This is illustrated in Fig.  5: the statistical 
power to detect the overall experimental effect steadily 
increases to 100  % as the number of clusters increases 
(Fig.  5a), while increasing the number of observations 
per cluster per condition sometimes results in a plateau 
(much) lower than 100  % (Fig.  5b). How much power 
increases as a result of extra observations per clusters 
depends on the amount of cluster-related variation in the 
experimental effect.

Conclusions
To draw valid conclusions in a nested experimental 
design, it is crucial to use the appropriate statistical 
method. We showed previously that design A data (i.e., 
nested data that possibly show cluster-related variation 
in the intercept) are abundant in neuroscience literature, 
and that proper statistical analysis of such data is crucial 
to avoid false positives [1].

Here, we showed that in case of design B data (i.e., 
nested data that possibly show cluster-related variation 
both in the intercept and in the experimental effect), cor-
rect statistical modeling of such data is also critical to 
avoid incorrect inference. However, in case of design B 
data, the exact consequences of ignoring the dependency 
depend on the nature of clustering. If cluster-related vari-
ation in the experimental effect is present, not accommo-
dating this cluster-related variation results in an inflated 
false positive rate. That is, in design A data, not accom-
modated variation in the intercept results in an inflated 
false positive rate, while in design B data variation in the 
experimental effect causes inflation in the false positive 
rate when not accommodated. Importantly, inflation of 
the false positive rate already occurs with a small amount 
of cluster-related variation in the experimental effect. In 
addition, if cluster-related variation is limited to the inter-
cept (and absent in the experimental effect), failure to cor-
rectly accommodate this variation can result in a loss of 
statistical power to detect the experimental effect of inter-
est. The loss in statistical power when using conventional 
analysis methods (i.e., t test) on individual observations 
instead of correctly specified multilevel analysis is note-
worthy when both the number of clusters and the overall 
effect are small. In addition, we showed that using stand-
ard statistical methods on summary statistics (i.e., paired t 
test) does result in a correct false positive rate, but results 
in a loss of statistical power to detect the experimental 
effects of interest when the number of clusters is small. 
Importantly, the use of standard statistical methods on 
summary statistics only results in correct parameter esti-
mates if the (sub)sample sizes are equal over clusters and 
experimental conditions (even if the summary statistics 
are weighted by the sample size of the cluster) [8].

Finally, multilevel analysis can provide valuable insight 
into the generalizability of the experimental effect over 
(biologically intrinsic) varying settings, and can be used 
to utilize cluster-related information to explain part of 
the variation in the experimental effect. Therefore, mul-
tilevel analysis not only ensures correct statistical inter-
pretation of the results, and thus correct conclusions, 
but can also provide unique information on the collected 
research data that cannot be obtained when standard sta-
tistical methods are used on either individual observa-
tions or summary statistics.
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