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Abstract 

Background:  The topological structure of the wiring of the mammalian brain cortex plays an important role in 
shaping the functional dynamics of large-scale neural activity. Due to their central embedding in the network, high 
degree hub regions and their connections (often referred to as the ‘rich club’) have been hypothesized to facilitate 
intermodular neural communication and global integration of information by means of synchronization. Here, we 
examined the theoretical role of anatomical hubs and their wiring in brain dynamics. The Kuramoto model was used 
to simulate interaction of cortical brain areas by means of coupled phase oscillators—with anatomical connections 
between regions derived from diffusion weighted imaging and module assignment of brain regions based on empiri-
cally determined resting-state data.

Results:  Our findings show that synchrony among hub nodes was higher than any module’s intramodular synchrony 
(p < 10−4, for cortical coupling strengths, λ, in the range 0.02 < λ < 0.05), suggesting that hub nodes lead the func-
tional modules in the process of synchronization. Furthermore, suppressing structural connectivity among hub nodes 
resulted in an elevated modular state (p < 4.1 × l0−3, 0.015 < λ < 0.04), indicating that hub-to-hub connections are 
critical in intermodular synchronization. Finally, perturbing the oscillatory behavior of hub nodes prevented functional 
modules from synchronizing, implying that synchronization of functional modules is dependent on the hub nodes’ 
behavior.

Conclusion:  Our results converge on anatomical hubs having a leading role in intermodular synchronization and 
integration in the human brain.
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Background
The human brain has to continuously process a large 
variety of information relating to vision, hearing, motor 
function, and numerous associative processes. The 
topological organization of the brain’s wiring pattern 
has an important role in enabling complex functional-
ity, evidenced by studies examining structural wiring 

architecture of mammalian and nematode neural systems 
that revealed several network attributes of an efficient 
processing and communication structure [1, 2]. Neural 
systems have been shown to exhibit synchrony patterns 
associated with communication between segregated 
anatomical neural components in terms of neuronal dis-
charges, beta and gamma band fluctuations and resting-
state blood oxygenation level dependent (BOLD) signals 
of brain regions [3–9]. Synchronized activity of special-
ized groups of neurons has been proposed to provide a 
neural basis for binding and integrating information [10–
12]. Moreover, brain disorders such as schizophrenia, 
epilepsy, autism and Alzheimer and Parkinson disease 
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have been associated with abnormal neural synchroniza-
tion [7].

These observations of (dys)synchrony called for the for-
mulation of mathematical models to provide insight into 
the neural dynamics and its relation to the complex archi-
tecture of the underlying structural pathways [13, 14].

Embracing network science as a general mathematical 
framework to understand topological organizational fea-
tures of neural wiring, studies have revealed high levels 
of clustering and community structure, suggesting the 
existence of functional sub-systems, as well as short com-
munication pathways and the existence of high-degree 
hub nodes that take a central role in the overall network 
organization [3, 15–18]. Furthermore, recent research 
has shown that a highly interconnected collection of 
high-degree nodes, the ‘rich club’, is embedded across 
many functional domains and may thus serve as an ana-
tomical infrastructure for global neural communication 
between otherwise segregated systems [1, 2, 16, 19, 20].

Using the Kuramoto model [21] to simulate brain inter-
actions through synchrony on the basis of structural con-
nectivity, functional implications of the organization of 
brain connectivity can be examined. These include for 
example how cross-domain integration can be influenced 
by the underlying wiring anatomy of the brain. Simulation 
studies employing the Kuramoto model have investigated 
synchronization patterns in the cortical brain networks 
of the cat [3], the macaque [22] and the human [23–25], 
showing correspondence with resting-state functional 
data supportive of the applicability of the model [24, 26]. 
Here, extending to previous work on random or targeted 
attack in structural brain networks [22, 27, 28], we studied 
the synchronization effects of suppressed structural con-
nectivity and perturbed intrinsic oscillatory behavior of 
brain regions in the human cortical network. Simulating 
these phenomena we shed light on the role of anatomical 
hubs in functional dynamics of the brain network, which 
may ultimately contribute to the understanding of effects 
of structural brain pathology on brain function.

Methods
Subjects
The cohort consisted of the 40 healthy subjects (mean 
age ±  standard deviation 27 ±  6.9; male/female: 27/13) 
previously reported on by Van den Heuvel et  al. and 
used as a replication set in [29]. Each subject gave 
informed written consent according to the Declara-
tion of Helsinki and the study was approved by the 
medical ethics committee for research into humans of 
the University Medical Center Utrecht. Scanning ses-
sions lasted 45  min and were performed on a 3 Tesla 
Philips Achieva Clinical scanner. For each subject, dif-
fusion weighted imaging data (acquisition parameters: 

SENSE-p =  3; two sets of 30 different weighted direc-
tions, and 2 × b = 0 images; repetition time (TR)/echo 
time (TE) = 7,035/68 ms, 2 × 2 × 2 mm, 75 slices cover-
ing whole brain, b weighting of 1000 s/mm2, second set 
with reversed k-space readout) and an anatomical T1 
image for anatomical reference (3D fast field echo (FFE) 
using parallel imaging; TR/TE =  10  ms/4.6  ms; field of 
view (FOV) = 240 × 240 mm, 200 slices covering whole 
brain, 0.75 × 0.75 × 0.75 mm) were acquired.

Connectome reconstruction
The structural network from [29] was recomputed at a 
219 × 219 network resolution using a subdivision of the 
Desikan–Killiany atlas [30]. Each area of the brain was 
designated as a node in the network, and edges represent 
anatomical connections between these nodes. For each 
individual, if reconstructed white matter fiber(s) were 
found between two nodes i and j, then a 1, indicating the 
presence of a connection, was placed in cell c(i,j) of the 
219 × 219 connectivity matrix, M. If no fibers were found 
connecting regions i and j, then these nodes were taken 
to be non-connected and the corresponding entry in the 
weighted connectivity matrix M was set to zero. From the 
individual connectivity matrices a binary group matrix 
was constructed having a 1 for connections present in at 
least 40 % of the subjects and a 0 otherwise [31].

Cortical network, rich club, and functional modules
A template of resting-state networks (RSNs) [32–35], dis-
tinguishing between subnetworks of regions that show 
correlated activity during rest based on resting-state 
functional MRI (fMRI) data from a group of healthy sub-
jects, was used to define 11 commonly reported RSN net-
works (Additional file 1: Figure S1) [16]. Van den Heuvel 
and Sporns 2013 used Independent Component Analy-
sis (ICA) decomposition on the resting-state fMRI data 
to define this RSN template. The 11 functional network 
maps were realigned to the group-averaged normalized 
T1 images of the subjects and resampled to the 219 par-
cellation scheme of the diffusion data. As performed in 
the Van den Heuvel and Sporns paper [16], each node 
was assigned a single RSN by means of a majority vote 
based on its voxels’ participation across the 11 RSNs. This 
resulted in each network node participating in a single 
functional module, with the functional modules varying 
in size from 11 to 31 nodes. Following the line of thought 
of previous studies [32, 33], these 11 RSNs were taken as 
a description of 11 functional domains (i.e. modules) of 
the human brain.

Hub nodes were selected on the basis of degree of con-
nectivity. Consistent with the size and layout of a neural 
rich club as reported in literature [2, 3, 36], the thirty-
nine nodes with the highest number of connections 



Page 3 of 13Schmidt et al. BMC Neurosci  (2015) 16:54 

(17.8 % of all nodes) were designated as members of the 
rich club. In concurrence with previous findings, the ana-
tomical rich club included the insula, precuneus, supe-
rior frontal and superior parietal regions and participated 
in all of the 11 functional modules [16, 20].

In order to verify our findings on the human cortical 
network, a reconstruction of the macaque cortical net-
work was used based on collated data from tract-tracing 
experiments. To this end the open source CoCoMac 
neuroinformatics database [37] was queried for white 
matter axonal projections linking cortical regions of the 
Felleman and Van Essen 91 atlas [38]. The Felleman and 
Van Essen 91 atlas describes a single hemisphere and 
includes a parcellation of the cerebral cortex into 78 non-
overlapping regions. For all node pairs a 1 was included 
in the symmetric structural connectivity (SC) matrix if 
the query returned at least 1 report and if of these reports 
at least 40  % were positive reports; otherwise a 0 was 
included in the matrix. The resulting SC matrix had a 
27.6 % density.

Since no predefined functional modules were available 
for the macaque, modules were created based on struc-
tural connectivity data by maximizing the number of 
within-group edges [39]. Modules were selected so that 
each module contained a minimum of 8 nodes out of the 
total of 78 nodes.

The Kuramoto model
The Kuramoto model simulates dynamic behavior of a set 
of coupled oscillators. Applying the Kuramoto model to 
the group-averaged anatomical brain network, each node 
was assigned an oscillator with a fixed, random inter-
nal angular frequency and an initial random phase. The 
model is defined as,

where θi(t) and ωi are the phase and internal angular fre-
quency of oscillator i respectively. The cortical coupling 
strength that is applied to the edges is denoted by λ. Wij is 
the symmetrical group matrix containing all connections 
between cortical nodes (Fig.  1) and N is the total num-
ber of nodes. The set of differential equations (Eq. 1) was 
solved numerically using a Runge–Kutta solver. During 
every run of the model, each node was assigned a ran-
dom initial phase, θ, uniformly distributed between [−π, 
π] and a random internal frequency, ω, uniformly dis-
tributed between [0, 1]. Simulations were carried out for 
T = 700 with a transient time of τ = 300, keeping these 
parameters the same as in previous work [3]. Explorative 
longer runs of T = 5000 did not change the nature of our 
findings. Output data from the last 400 time points was 
then used in the analyses.

(1)θ̇i = ωi + �

∑N

j = 1
Wji sin(θj − θi)

Synchronization metrics and computational details
Two order parameters r and rlink were used to describe 
global dynamic coherence.1 The first order parameter, r, 
is based on a complex number z defined as,

where r(t) is the modulus of z(t). The variable r(t) is a 
measure of the phase synchrony among the population 
of N oscillators. Φ(t) is the average combined phase of all 
oscillators. Averaging r(t) over time yields the first order 
parameter, r.

In addition to the average phase coherence, r, the aver-
age edgewise synchrony also provides information about 
the state of the network [3, 40]. The edgewise synchrony 
between nodes i and j, Cij, is defined by

together forming C, the simulated functional connectiv-
ity matrix. Average edgewise synchronization levels are 
taken together to yield rlink,

where N is the total number of nodes of the network. 
The phase coherence, r, and the fraction of synchronized 
node pairs, rlink, together describe the global dynamics of 
the system.

Going beyond the examination of global dynamics, 
synchronization dynamics were also studied on a modu-
lar level, analyzing nodes together on the basis of their 
functional module assignment. In order to assess the like-
lihood of particular nodes to be in synchrony, node pairs 
need to be classified as either synchronized or non-syn-
chronized. To this end the rlink parameter, ranging from 
0 (total incoherence) to 1 (perfect synchrony), was used 
to define the proportion of nodes that are in synchrony. 
Assuming a threshold level of synchronization, Cij, exists 
above which the nodes’ oscillatory behavior converge 
to full synchrony, a theoretically equivalent system with 
equal order parameter rlink, was constructed composed of 
N(N-1) ×  rlink perfectly coherent and N(N-1) ×  (1-rlink) 
completely incoherent node pairs, described by a binary 
synchronization matrix Fij:

1  rlink is equivalent to r*link in [3], in which the Kuramoto model was applied 
to the cat brain.

(2)z(t) =
1

N

∑N

j=1
eiθj(t) = r(t)eiΦ(t)

(3)Cij =
1

�t

∣

∣

∣

∣

∑τ+�t

τ
ei[θi(t)−θj(t)]

∣

∣

∣

∣

(4)rlink =
1

N (N − 1)

∑

i,j
Cij

(5)

Fij =

{

1, N (N − 1)rlink largest elements of Cij

0, lower values of Cij
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The number of edges present in F now matches the 
number of synchronized connections predicted by rlink. 
The node pairs showing the highest synchronization lev-
els are thus categorized as synchronized, and those with 
lower synchrony as unsynchronized. In order to study 
synchronization levels independent of initial conditions, 
n = 103 trials were run for each cortical coupling strength 
λ. The Fij values were averaged across trials into rij such 
that,

where rij reflects the probability of regions i and j to be 
synchronized and where l is the trial number. Based on 
the probability of synchronization between any two 
areas, modular synchronization, rαβ, is calculated as,

(6)rij =
1

n

∑n

l=1
Fij(l)

(7)rαβ =
1

NαNβ

∑

i∈α, j∈β
rij

where i describes the nodes in module α, and j are nodes 
in module β. Nα and Nβ are the number of nodes in mod-
ule α and β respectively. In the case of intramodular syn-
chrony (α = β), Eq. 7 was slightly adapted to Eq. 8 so that 
synchrony within a node (i.e. rii) was eliminated, to avoid 
module size to have an effect on intramodular synchrony.

The mean field representation is an alternative repre-
sentation of the Kuramoto model, describing each oscil-
lator’s dynamics by a centroid with a mean radius and a 
mean phase:

derived by substituting the following expression into the 
original Kuramoto model definition of Eq. 1 [21, 41]:

(8)rαα =
1

Nα(Nα − 1)

∑

i,j �=i∈α
rij

(9)θ̇k = ωk − Rk · sin (φk − θk)

(10)
Rke

iφk =
1

Dk

∑

j
Wkje

iθj

Fig. 1  Structural binary input with functional output. The binary undirected adjacency matrix that describes the cortical brain network in the lower 
triangle, and the edgewise weighted synchronization output (simulated functional connectivity) in the upper triangle (generated at cortical coupling 
factor λ = 0.02). The histogram at the bottom shows the degree (i.e. number of connections) of each node. Each module is color-coded and rich 
club nodes, distributed across the functional modules, are shown in black. The eleven functional modules are: (1) Default Mode, (2) Primary Visual, 
(3) Extrastriate Visual, (4) Motor, (5) Sensory, (6) Bilateral Parietal, (7) Left Parietal Frontal, (8) Right Parietal Frontal, (9) Auditory, (10) Salience, and (11) 
Frontal
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where Rk is the radius and φk the phase of the centroid 
representing node k and Dk is the degree of node k (i.e. 
the number of other nodes it is connected to). The cen-
troid’s radius Rk captures the phase coherence among the 
nodes that node k is connected with and, as can be seen 
from Eq.  9, it denotes the strength by which the mean 
field influences the frequency of node k. Rewriting Eq. 10 
as follows yields each module’s contribution to the mean 
field and therefore one obtains a measure of how strongly 
each of the modules influence the frequency of node k:

where Dk,α is the number of connections between node k 
and module α, Rk,α stands for the influence module α has 
on the frequency of node k, and φk,α is the mean phase of 
module α nodes that are connected to node k. A similar 
expression can be used to describe the influence of hub 
nodes’ on the frequency of node k:

If node k is connected to only one node of module α, 
Dk,α = 1, it follows that Rk,α = 1 which cannot be inter-
preted as a measure of phase coherence. Therefore analy-
ses were based on instances of Dk,α > 1.

As a measure of the impact of module nodes or hub 
nodes on nodes in another module, values of Rk,α were 
averaged over all nodes k belonging to the collection of 
nodes of interest, e.g.:

similarly, for hubs:

where Rβ,α (or Rβ,hubs) denotes the average influence of 
module α nodes (or hub nodes) on the frequencies of 
module β nodes.

Connectivity suppression
To assess the effects of suppressed connectivity on syn-
chrony, selected edges were computationally removed 
from the adjacency matrix [42]. Hub connectivity was 
suppressed by decoupling all hub nodes with respect to 
each other. Since this type of hub connectivity suppres-
sion alters the overall connectivity density (which may 
have general consequences for network synchroniza-
tion), an equal number of random edges was removed for 

(11)

1

Dk

∑

j
Wkje

iθj =
1

Dk

[

∑

j∈α
Wkje

iθj +
∑

j∈β
Wkje

iθj + . . .

]

=
1

Dk

[

Dk ,αRk ,αe
iφk ,α + Dk ,βRk ,βe

iφk ,β + . . .

]

(12)Rk ,hubse
iφk , hubs =

1

Dk , hubs

∑

j∈hubs
Wkje

iθj

(13)Rβ ,α =
1

Nβ

∑

k∈β
Rk ,α

(14)Rβ ,hubs =
1

Nβ

∑

k∈β
Rk ,hubs

reference purposes in the test condition. For trials with 
suppressed connectivity, the structural adjacency net-
work, W, was adjusted by,

where K is the subset of nodes selected to be modulated. 
It is important to note that in the modulation conditions 
all hub nodes remained connected to the rest of the net-
work as normal.

Nodal frequency perturbation
In the trials where oscillator frequency was tracked, the 
data was grouped by module and a Fourier transform 
was applied in order to find the most powerful frequency 
within the modules. In the model trials, in which a set of 
nodes (i.e. hubs, random nodes or all nodes belonging to 
one of the modules) had their internal frequencies per-
turbed, the nodes were first assigned a random initial 
phase and internal frequency (as described above). Then, 
nodes within the selected set had their angular frequency 
increased by one.

To test the variation among dominant frequencies of 
the functional modules, a Bartlett’s test was performed 
on the unperturbed modules at the cortical coupling fac-
tor immediately prior to when the perturbed set of nodes 
became synchronized with the rest of the modules. For 
this purpose, whole brain synchronization was defined as 
the point at which lowest modular frequency was within 
5 % of the highest modular frequency.

Results
Global synchronization
Assessing global synchronization in the anatomical brain 
network with the Kuramoto model revealed a modular 
state for low cortical coupling strengths, λ, that quickly 
transitioned into whole brain synchrony at increased cor-
tical coupling. The level of global synchronization was 
measured by the Kuramoto model’s order parameters r 
and rlink, denoting the extent to which nodes are in phase 
and the share of in-phase nodes respectively, where r (or 
rlink) close to zero indicates global incoherence and r (or 
rlink) near one reflects a state of global synchrony.

Figure 2a shows how levels of global synchronization 
progress with respect to cortical coupling strength. The 
order parameter r has been shown to follow a square-
root function of the coupling strength λ [21], therefore 
the shape of the curve results from a square-root curve 
smoothed out by the heterogeneity in the intrinsic fre-
quencies and by the network topology of the oscilla-
tors. A critical regime was observed between λ = 0.02 
and λ = 0.04, indicated in blue in Fig. 2a, during which 
the network abruptly switches from brain regions being 
synchronized locally to a state of global synchrony, 

(15)Wm,n∈K = 0
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consistent with previous work on the cat cerebral cor-
tex [3]. Figure 2b shows three panels of synchronization 
levels, or simulated functional connectivity, illustrat-
ing the modular state (small clusters of synchronized 
nodes), transition state (widespread synchrony arising) 
and global synchrony state (nearly all nodes in syn-
chrony), evaluated by the Kuramoto model at corti-
cal coupling factors λ =  0.02, λ =  0.03 and λ =  0.04, 
respectively.

Network connectivity
Overlaying the reconstructed structural brain network, 
described by a binary 219 × 219 matrix derived from dif-
fusion weighted imaging (DWI) data of 40 healthy sub-
jects, with 11 commonly reported functional modules 
(see “Methods”), revealed that functional modules were 
structurally more densely connected as compared to the 
overall density of the SC matrix (Fig. 1, p < 10−3, permu-
tation test, 103 random selections of nodes). As a result, 
the highly internally connected functional modules pro-
duced higher levels of synchrony in our Kuramoto simu-
lations, peaking at λ = 0.02. Synchrony was found to be 

significantly higher among node pairs that were directly 
connected by a structural connection compared with 
structurally unconnected node pairs (factor 3.9, p < 10−4, 
permutation test, 104 random selections of unconnected 
node pairs), reflecting the apparent overlap between 
the lower triangular part of the matrix of Fig. 1, the SC 
matrix, and the upper triangular part containing the sim-
ulated synchronization levels. The high structural density 
of the functionally defined modules and their high levels 
of synchronization are thus indicative of a positive struc-
ture–function relationship, in accordance with recent lit-
erature [43–45].

Hub selection and participation
The anatomical brain network showed a clear rich club 
organization [2, 20, 46], with nodes of high degree, k, 
or hub nodes, being more densely interconnected than 
expected by chance (11  <  k  <  44). Next, using k =  26, 
we selected the 39 nodes (18 % of all nodes) having the 
largest number of connections (degree), as the set of 
anatomical hubs [2, 3, 36]. These hub nodes were found 
to be distributed throughout the brain network and 

Fig. 2  Global synchrony progression. The order parameters, r, reflecting global phase synchronization, and rlink, reflecting the synchronized node 
fraction, increase with the coupling factor, λ (a). The critical regime, highlighted in blue, is the domain during which the system quickly transitions 
from the modular state to whole brain synchrony. Panel b shows the simulated functional synchrony output of the model at several different corti-
cal coupling factors. A notable change from synchrony within the modules (along the diagonal) to whole brain synchrony occurs as the coupling 
factor is increased. Note that for illustrative purposes color scales vary among the three realizations of simulated functional synchrony



Page 7 of 13Schmidt et al. BMC Neurosci  (2015) 16:54 

to participate in all 11 functional modules (Fig.  1), in 
accordance with the central embedding of hubs in the 
anatomical network and their suggested ability to facili-
tate communication and integration between anatomi-
cally segregated brain regions [3, 16].

Modular synchronization
Intramodular synchrony, reflecting the share of in-phase 
nodes within a functional module, was observed to 
evolve as an s-curve with respect to coupling strength in 
all 11 functional modules (Fig.  3a) again with a critical 
regime between λ = 0.02 and λ = 0.04 showing a steep 
increase in intramodular synchrony similar to global 
synchrony (Fig. 2). In Fig. 3b the synchronization among 
the hub nodes (intra-hub synchrony) is contrasted with 
the intramodular synchrony levels observed in each of 
the 11 functional modules. While similar in shape, the 
curve corresponding to the hub nodes is observed to be 
shifted towards lower cortical coupling strengths with 
respect to the graphs of the functional modules. In other 
words, intra-hub synchrony is higher than any module’s 
intramodular synchrony (p < 10−4, 104 random permuta-
tions of connection labels ‘intra-hub’ and ‘intramodular’, 
0.02  <  λ  <  0.05), implying that the rich club structure, 
spread out across the brain network and involved in all 
functional modules, requires less cortical coupling in 
order to reach synchrony than the similarly dense or even 
denser functional modules.

Furthermore, nodes participating in the same func-
tional module were found to be more closely synchro-
nized to each other than nodes from different modules, 
reflected by a 1.5 times higher synchrony between nodes 
within a module than between nodes in different modules 
(p < 10−3, 103 random permutations of connection labels 

‘intramodular’ and ‘intermodular’, evaluated at the onset 
of the critical regime, λ = 0.02). Examining hubs showed 
this class of nodes to have a significantly higher synchro-
nization among themselves than the nodes belonging to 
any functional module or than an equally sized random 
set of nodes (p < 10−4, 104 random permutations of node 
labels ‘hub’ and ‘modular’, 0.005 < λ < 0.075), indicating 
that global hub nodes are leading the functional modules 
in establishing local modular synchrony. In addition, syn-
chrony between a functional module and the set of hub 
nodes was found to be significantly higher than inter-
modular synchrony (p <  l0−4, 104 random permutations 
of connection labels ‘hub-module’ and ‘intermodular’) 
for 53 out of all 55 combinations of functional modules 
(11 × 10/2) (Additional file 2: Figure S2), suggesting the 
structure of the network supports intermodular synchro-
nization through the strongly tied hub nodes.

The mean field representation of the Kuramoto model 
and the break down of synchrony contributions across 
the functional modules and the hub nodes Eqs.  13 and 
14, allowed for the comparison between the contribu-
tions of modules and hub nodes towards global syn-
chrony. Figure  3c shows the synchrony contributions 
received by the Default Mode Network from each of the 
functional modules and the hub nodes (for the other 
modules see Additional file  3: Figure S3). In the critical 
regime between λ =  0.02 and λ =  0.04, where the hub 
nodes become more synchronized among each other, the 
hubs exert stronger influence on the modules and take on 
a dominant role in exerting influence on the rest of the 
network, evidenced by the steepest increase in impact 
on functional modules compared to the change in influ-
ences exerted by the modules (Additional file  3: Figure 
S3, paired t-test between a module’s and the hub nodes’ 

Fig. 3  Intramodular synchrony progression. Panel a shows the evolution of intramodular synchrony within each of the 11 functional modules. The 
aberration of the Frontal module near whole brain synchrony is due to a single low-degree node. Panel b compares the intramodular synchrony of 
the modules to that of the hub nodes. Notably, the hub nodes led all of the functional modules in intramodular synchrony even though they were 
spatially distributed across the functional modules, and possessed a structural density on par with the average of the functional modules. Panel 
c shows the influence of each of the 11 modules and the hub nodes on the frequency of Default Mode Network nodes. The hub nodes become 
dominant in the process of global synchronization during the critical regime
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impact on the set of 11 modules, p < 0.02). Moreover, at 
the end of the critical regime, λ =  0.04, the hub nodes’ 
influence on each of the modules is greater than that of 9 
out of 11 modules (paired t-test, p < 0.04) and not signifi-
cantly different from the two remaining modules (Visual 
and Bilateral Parietal, paired t-test, p > 0.85).

Hub connectivity suppression
Next, we examined the role of hub nodes in establish-
ing global synchrony. Targeted suppression of structural 
connectivity was inflicted by computationally removing 
edges between hub nodes. For comparison, in a sepa-
rate simulation, an equal number of random edges were 
removed. In simulations with suppressed connectiv-
ity (either between hubs or between random nodes), 
stronger cortical coupling was required for synchroni-
zation to compensate for the loss of connectivity, while 
the general shape of global synchronization progression 
towards a state of global synchrony remained the same 
(Additional file  4: Figure S4). However, simulations in 
which hub-to-hub connectivity was suppressed showed 
a significantly higher intramodular to global synchrony 
ratio than randomly suppressed connectivity simula-
tions (Fig.  4) (p  <  4.1 ×  l0−3, 104 random permutations 
of hub-to-hub and random connectivity suppressions, 
0.015 < λ < 0.04). This increased intramodular to global 
synchrony ratio as seen in the hub suppressed network 

indicates that connections spanning between hub nodes 
(so-called ‘rich club connections’ [29]) play an impor-
tant role in the integration of modules needed to reach 
global synchrony. Also in comparison with the unsup-
pressed, normal condition, suppression of hubs resulted 
in increased modularity (Additional file  5: Figure S5), 
again illustrating that without interconnected hub nodes, 
functional modules become more separated and the 
emergence of global synchrony is hampered.

Hub perturbation
Apart from manipulating connectivity through edges 
as presented in the previous analysis, synchroniza-
tion dynamics in the Kuramoto model can also be per-
turbed by offsetting the initial internal frequencies of 
a set of nodes. As lower levels of synchronization are a 
trivial consequence of these frequency perturbations, 
we tracked nodal frequencies along the path towards 
global synchrony to examine how different sets of 
nodes affected the synchronization of the entire system. 
Figure 5a shows that with the frequency of the hub nodes 
perturbed, the functional modules remained out of syn-
chrony with respect to each other until the hub nodes 
stabilized at a frequency near the whole brain frequency 
corresponding to global synchrony. In contrast, in all 
other simulations where a different set of nodes was per-
turbed, the frequencies of the unperturbed modules con-
verged to a common global frequency, reflecting global 
synchronization, even though the perturbed set of nodes 
were still operating at a markedly higher frequency. For 
example, when a random set of nodes (equal in number 
to the hub nodes) had their internal frequencies per-
turbed, the remaining unperturbed portion of the system 
was found to synchronize without the perturbed set of 
nodes (Fig. 5b). Similarly, perturbing the nodes of any of 
the 11 functional modules did not keep the other mod-
ules from synchronizing among one another (see Fig. 5c 
for an example in which the Default Mode Network 
module was perturbed). Nearly identical findings for the 
remaining 10 functional modules are provided in Addi-
tional file 6: Figure S6.

Testing the variation of frequencies among modules in 
the case of hub node perturbation, compared to if either 
a functional module or a random set of nodes was per-
turbed, showed, as depicted in Fig. 5, that hub node per-
turbation caused the highest frequency variation among 
the functional modules (p < 6× 10−9, Bartlett’s test). This 
effect of relative global asynchrony with perturbed hub 
nodes remained present when a smaller rich club com-
prising 22 hub nodes, closer to the average functional 
module size of 17. 9 ± 5.1 nodes, was examined (Addi-
tional file 7: Figure S7). Taken together, these frequency 
perturbation findings suggest that the hub nodes are 

Fig. 4  Modularity increased with hub connectivity suppressed. The 
ratio between the average intramodular synchrony of the functional 
modules and the whole brain synchrony is displayed for the cases 
in which either edges between hub nodes or random edges have 
been removed. Interestingly, when hub connectivity was suppressed, 
intramodular synchrony relative to global synchrony increased during 
the critical regime. Conversely, this increase in modularity was not 
observed when only random edges were removed
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essential components that cannot operate at frequencies 
isolated from the rest of the network in order for global 
synchronization to occur.

Macaque verification
A reconstruction of the macaque connectome, based 
on an extraction from the CoCoMac database [37] con-
taining anatomical tract-tracing data (see Methods), was 
used to verify synchronization effects observed in the 
human cortical network. Analogous to the main analysis 
of the human cortical network, identical Kuramoto simu-
lations were run on the SC data describing the macaque 
connectome, of which the results are summarized below. 
Findings in the macaque were in close agreement with 
those in the human:

Global synchrony Global synchronization in the 
macaque brain was observed to increase with cortical 
coupling strength and revealed a modular state and a 
state of global synchrony separated by a critical regime 
(Additional file 8: Figure S8).

Network connectivity Synchrony between structurally 
connected nodes was higher than synchrony between 
nodes not directly connected; the ratio between these two 
values peaked early in the critical regime at λ =  0.015, 
where synchrony in directly structurally connected nodes 
was 3.07 times higher (p < 10−5).

Hub selection and participation Rich club organization 
was found for k > 14 to k = 56. The 15 nodes (19 %) hav-
ing degree k > 38 were selected as the set of hub nodes. 
These hubs were again found to be distributed across the 
cortical network, participating in all functional modules.

Modular synchronization The synchronization among 
hub nodes and the intramodular synchronization showed 
the characteristic s-curve progression for increasing corti-
cal coupling strength, with the hub nodes synchronizing 
at lower cortical coupling than the modules. Furthermore, 
synchrony between a module and the hub nodes during the 
modular state (λ = 0.01) was found to be significantly higher 
than intramodular synchrony for all 6 out of 6 modules and 
higher than intermodular synchrony (p < 7.2 × 10−4) for all 
15 combinations of modules (6 × 5/2).

Hubs showed a steeper increase in their influence on 
the frequencies of modules during the critical regime 
than 4 out of 6 modules (paired t-test, p  <  0.03) and at 
the end of the critical regime, the hubs’ impact on each of 
the modules is greater than that of all 6 modules (paired 
t-test, p < 0.04).

Hub connectivity suppression Simulations in which hub 
connectivity was suppressed showed increased modu-
larity (higher intramodular to global synchrony ratio, 
p < 10−4, 0.01 < λ < 0.03) compared with the removal of 
an equal sized random set of connections (Fig. 6a).

Hub perturbation Perturbation of the hub nodes 
revealed that the remaining unperturbed nodes of the 
network were not able to synchronize before the hub 
nodes had converged to the frequency of global syn-
chrony (Fig. 6b). In contrast, for a perturbed random set 
of nodes or a perturbed module, the unperturbed part 
of the network was still able to synchronize (Fig. 6c, d). 
Significantly higher variation was observed for the hub 
nodes perturbed simulations than if a random set of 
nodes or a module was perturbed (p < 7 × 10−5).

Fig. 5  Modular frequency tracking during perturbation. When the internal frequencies of a particular module were perturbed, the evolution of 
the frequencies towards whole brain synchrony was tracked for each module. Panel a shows the case in which the hub nodes had their internal 
frequencies altered, and the rest of the modules were unable synchronize until the hub nodes’ frequency came down to the range of frequencies 
of the functional modules. Panel b shows the case in which a random set of nodes equal in number to the rich club has been perturbed. Here, syn-
chronization occurred faster than when the hub nodes were perturbed, and the functional modules were able to synchronize before the random 
nodes join at a whole brain shared frequency. Panel c shows the case in which the largest functional module (Default Mode) was altered. Note that, 
in this case too, the rest of the modules are able to synchronize before the Default Mode module joins. The insets in each graph focus on the cortical 
coupling factors just before the perturbed set of nodes became synchronized with the unperturbed functional modules. From these insets, it is 
clear that perturbing the hub nodes causes less synchrony among the non-perturbed functional modules
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Discussion
Our simulations of synchrony patterns based on a struc-
tural reconstruction of the human cortical network pro-
duce converging evidence that hub nodes act as spatially 
distributed but functionally central integrators of neural 
information between otherwise segregated functional 
domains. First, hub nodes showed high levels of synchro-
nization among themselves and were found to be distrib-
uted across all functional modules. Second, suppression 
of connectivity among hub nodes caused the network 
to show stronger modularity in synchronization pat-
terns. Third, perturbation of hub nodes’ intrinsic oscil-
latory behavior prevented the functional modules from 
synchronizing.

We verified these findings in the macaque, using a con-
nectome reconstruction based on collated tract-tracing 
data.

Functional modules based on resting-state fMRI 
data displayed high structural density as well as strong 
intramodular synchrony, providing simulation based 

indications of a positive structure–function relationship 
in empirical data [29, 44, 47].

Previous modeling work revealed that the wiring of cor-
tical networks gives rise to the formation of functional 
modules [14, 48–50]. Our simulations over a range of 
coupling strengths showed a critical regime [3, 25] sepa-
rating a modular state from the state of global synchrony. 
Although caution is needed to directly interpret the simu-
lated cortical coupling strengths of cortico-cortical con-
nections as a mechanism to allow a cortical network to 
switch between a modular state and global synchrony, our 
results do support the notion of topological organization 
of the cortical network to enable theoretical synchrony 
both at the modular and at the global level [51]. The state 
of global synchrony itself is not to be directly interpreted 
as biologically meaningful, being merely the attractor 
state of the Kuramoto model. It is the progression towards 
global synchrony that reveals how synchronization—and 
therewith hypothesized binding of information [10, 12]—
among segregated brain regions may dynamically occur.

Fig. 6  Macaque verification of hub connectivity suppression and perturbation effects. Suppressing hub connectivity in the macaque cortical 
network verified the result of increased modularity found in the human cerebral cortex network (Fig. 4). Throughout the critical regime modules 
were found to have increased intramodular synchrony when hub connectivity was suppressed pointing at the important role of hub nodes in 
establishing intermodular and global synchrony (a). Similar to the effects observed in the human network (Fig. 5), perturbing the internal frequen-
cies of the hub nodes in the macaque cortical network prevented the modules from synchronizing (b). Perturbation of an equally large random set 
of nodes (c) or a module (d) did not keep the unperturbed part of the network from synchronizing, underlining the importance of the hub nodes in 
intermodular communication and integration
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Hub nodes were found to be distributed across the cor-
tical network and to participate in all functional modules, 
consistent with previous observations [16, 36, 44–46], 
which are characteristics well-suited to a facilitating role 
in intermodular communication and integration con-
tributing to global synchrony [52]. In further support of 
the importance of hub nodes in global synchrony, our 
simulation results show synchronization among hub 
nodes to be stronger than the intramodular synchroniza-
tion of the functional modules, suggesting that the net-
work topology is such that hub nodes form a closely tied 
and functionally linked ensemble leading the functional 
modules in establishing synchrony. Anatomically densely 
intra-connected functional modules showed the highest 
levels of intramodular synchrony. Hub nodes stood out 
due to their strong mutual synchronization while having 
a structural density near the average density of the func-
tional modules, indicating strong synchrony among hub 
nodes was not purely a consequence of structural density.

Our observation of strong synchrony between hub 
nodes aligns well with the results of two other Kura-
moto simulation studies, one on the macaque cortex, 
reporting hubs to synchronize at shorter timescales com-
pared to other nodes [22] and another on the cat cortex 
reporting anatomical hubs to be leading the transition to 
whole brain synchrony [3]. Moreover, a recent study of 
our group in which we used an alternative model for the 
simulation of brain dynamics (an Ising spin glass model 
[53]) showed the tendency of hub nodes to collectively be 
in an ‘activated state’ and to enrich the overall functional 
dynamics of the system [49].

Suppressing connectivity, irrespective of the targeted 
edges in the network, resulted in a reduction of global 
and intramodular synchrony, directly related to the 
sparser structural input. The ratio between intramodular 
and global synchrony provided more insight into the rela-
tive effect of connectivity suppression, with targeting the 
connections linking hub nodes leading to an increased 
intramodular to global synchrony ratio. Such an increase 
in modularity was not observed when a random set of 
connections was removed (Additional file  5: Figure S5), 
indicating connections between hub nodes to be particu-
larly important for intermodular communication and 
integration.

Further evidence of the importance of hub nodes in 
shaping intermodular functional dynamics was demon-
strated by perturbing the intrinsic oscillatory behavior 
of the hub nodes. While offsetting the internal frequen-
cies of the hub nodes did not have a permanent effect 
on the network dynamics other than a trivial change in 
whole brain synchrony state frequency, the functional 
modules remained desynchronized until the hub nodes 
approached a matching synchronization frequency 

(Fig.  5a). Perturbing a functional module or an equal 
number of random nodes, by contrast, did not prevent 
the unperturbed modules from synchronizing with each 
other, leaving the perturbed set of nodes isolated (Fig. 5b, 
c).

An important consideration resulting from the inter-
pretation of rlink as a fraction of synchronized nodes 
is that the cut-off value of Cij, above which node pairs 
are considered to be in synchrony, may vary. As a con-
sequence, node pairs with a relatively high level of syn-
chronization, falling just below the cut-off value, can be 
classified as completely incoherent using this approach. 
Interpreting rlink as the fraction of synchronized nodes 
is most accurate where there is a clear divide between 
node pairs in their levels of synchronization. Further-
more, it should be noted that a binary, undirected 
adjacency matrix was used as structural input to our 
simulations, resulting in each edge to contribute equally 
in the model drawing all nodes to a global frequency con-
verging to the average of all internal node frequencies. 
Future studies could focus on modified Kuramoto model 
implementations, e.g. including connection weights, for 
enhanced biological plausibility [41] to further elucidate 
the observed patterns of modular and global synchroni-
zation. Another limitation arises from the crudeness of 
the suppression applied to the structural input. Reduced 
white matter integrity is linked to various psychiatric 
and neurological disorders, but at the scale of this cor-
tical network, consisting of 219 nodes, disease effects 
including the loss of entire anatomical connections are 
improbable. It would therefore be of interest to explore 
the effects of connectivity suppression in a weighted 
approach, in which strengths of individual connections 
can be adjusted.

In the macaque verification analyses ‘functional’ mod-
ules were derived from anatomical connectivity. For 
consistency with our module definition in the human, 
macaque resting-state fMRI acquisitions would have 
been ideal. However, with structural and functional con-
nectivity and modularity strongly overlapping both in the 
human [43, 54] and in the macaque [47, 55], the struc-
turally defined modules are a valid approximation for 
macaque functional modules.

Conclusion
The synchronization patterns examined in this study pro-
vide insight into how anatomical hub nodes may form an 
infrastructure facilitating communication between func-
tional modules enabling global binding and integration of 
information.

The Kuramoto model’s ability to simulate structurally 
dependent functional synchrony could be further utilized 
to simulate neurological and neuropsychiatric diseases 
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that affect the anatomical connectivity of the brain, and 
could potentially aid in understanding the relationships 
between disease structural abnormalities and changes in 
functional brain dynamics and connectivity.
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Additional files

Additional file 1:  Figure S1. Functional modules derived from resting-
state fMRI data. This figure from Van den Heuvel and Sporns, 2013, shows 
the location of the functional modules based on independent compo-
nent analysis (ICA) of resting-state fMRI data.

Additional file 2:  Figure S2. Inter- and intramodular synchrony. Each 
bar plot corresponds to the inter- and intramodular synchrony of each 
of the 11 functional resting-state modules and the hub nodes. Shown syn-
chronization levels were evaluated at the onset of the critical regime with 
a cortical coupling factor λ = 0.02. The hub nodes showed particularly 
high synchrony compared with the functional modules even though 
they were distributed across the modules. In some cases, synchrony 
between the hub nodes and a module was even higher than the mod-
ule’s intramodular synchrony (see plot 1, 5, 6 and 8). This strong level of 
synchrony suggests the hub nodes’ importance for synchrony across the 
network.

Additional file 3:  Figure S3. Influences on oscillation frequencies of the 
modules and hub nodes. For each of the 11 modules (1 plot per module), 
the influences on its frequencies of the modules and hub nodes (12 lines 
per plot corresponding to the modules and the hub nodes) are shown. 
The hub nodes become dominant in the process of global synchroniza-
tion during the critical regime.

Additional file 4:  Figure S4. Hub versus random connectivity suppres-
sion. When edges were removed from the adjacency matrix, attaining 
whole brain synchrony required a higher cortical coupling factor. Remov-
ing both random and edges between hub nodes produces this result.

Additional file 5:  Figure S5. Modularity increased with hub connectiv-
ity suppressed. The ratio between intramodular synchrony and whole 
brain synchrony is shown for normal, hub connectivity suppressed, and 
random edge suppressed states. During the critical regime, the random 
edge suppressed state was observed to be almost identical to the 
normal state. In contrast, the hub connectivity suppressed state shows 
a significantly increased intramodular synchrony relative to whole brain 
synchrony, reflecting stronger modularity in the hub connectivity sup-
pressed state.

Additional file 6:  Figure S6. Modular frequency tracking during 
perturbation. Next to the Default Mode module (Figure 5), the effects of 
perturbation were examined for the remaining 10 functional modules as 
well. In each instance, the non-perturbed modules synchronized before 
the perturbed module joined in whole brain synchrony, consistent with 
the Default Mode perturbation and distinctly different from the hub node 
perturbation shown in figure 5.

Additional file 7:  Figure S7. Small set of hub nodes perturbed. 
Perturbation of a smaller set of hub nodes also prevented the functional 
modules from synchronizing until the hub nodes’ frequency joined in 
whole brain synchrony.

Additional file 8:  Figure S8. Global synchrony progression in the 
macaque. The order parameters r and rlink for the macaque model network 
progressed in a manner similar to the human network (Figure 2), display-
ing a modular and a whole brain synchrony state separated by a critical 
regime.
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