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Receptor interacting protein 3‑induced 
RGC‑5 cell necroptosis following oxygen 
glucose deprivation
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Abstract 

Background:  Necroptosis is a type of regulated form of cell death that has been implicated in the pathogenesis of vari‑
ous diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family of proteins, has been reported as an impor‑
tant necroptotic pathway mediator in regulating a variety of human diseases, such as myocardial ischemia, inflammatory 
bowel disease, and ischemic brain injury. Our previous study showed that RIP3 was expressed in rat retinal ganglion cells 
(RGCs), where it was significantly upregulated during the early stage of acute high intraocular pressure. Furthermore, RIP3 
expression was co-localized with propidium iodide (PI)-positive staining (necrotic cells). These results suggested that RIP3 
up-regulation might be involved in the necrosis of injured RGCs. In this study, we aimed to reveal the possible involvement 
of RIP3 in oxygen glucose deprivation (OGD)-induced retinal ganglion cell-5 (RGC-5) necroptosis.

Methods:  RGC-5 cells were cultured in Dulbecco’s-modified essential medium and necroptosis was induced by 8 h 
OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. RIP3 expression was detected by 
western blot and flow cytometry was used to detect the effect of RIP3 on RGC-5 necroptosis following OGD in rip3 
knockdown cells. Malondialdehyde (MDA) lipid peroxidation assay was performed to determine the degree of oxida‑
tive stress.

Results:  PI staining showed that necrosis was present in the early stage of OGD-induced RGC-5 cell death. The pres‑
ence of RGC-5 necroptosis after OGD was detected by flow cytometry using necrostatin-1, a necroptosis inhibitor. 
Western blot demonstrated that RIP3 up-regulation may be involved in RGC-5 necroptosis. Flow cytometry revealed 
that the number of OGD-induced necrotic RGC-5 cells was reduced after rip3 knockdown. Furthermore, MDA levels in 
the normal RGC-5 cells were much higher than in the rip3-knockdown cells after OGD.

Conclusions:  Our findings suggest that RGC-5 cell necroptosis following OGD is mediated by a RIP3-induced 
increase in oxidative stress.

Keywords:  Retinal ganglion cell-5, Receptor-interacting protein 3, Oxygen glucose deprivation, Necroptosis, 
Oxidative stress
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Background
Necrosis has been considered as an uncontrollable form 
of cell death for a long time, which has the morphological 

features of losing plasma integrity and organelle swell-
ing. Recently, more and more evidences have showed 
that necrosis can be regulated by TNF-α, Fas ligand or 
ischemia–reperfusion, etc. The type of regulated form of 
necrosis termed necroptosis occurs in many cell types. 
Recent studies have shown the presence of necropto-
sis in glutamate-induced hippocampal neuronal injury 
[1, 2], oxygen glucose deprivation (OGD)-induced cor-
tical neuronal damage [3, 4], and hemin-induced glial 
cell damage [5]. Rosenbaum et al. [6] found necroptotic 
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cells in the retinal ganglion cell layer during acute high 
intra-ocular pressure (aHIOP). Several recent studies 
have suggested that receptor interacting protein 3 (RIP3) 
plays an important role in necroptosis in many cell types. 
Vieira et al. [7] showed that RIP3 mediated neuronal cell 
death and its expression was upregulated in primary hip-
pocampal neurons following OGD-induced injury. Wang 
et al. [8] found that the expression of RIP3 could be sup-
pressed by Necrostatin-1 (Nec-1) in ouabain-induced 
spiral ganglion neuronal injury. Viringipurampeer et  al. 
[9] showed that morpholino gene knockdown of rip3 can 
rescue dying photoreceptors in a zebrafish model of reti-
nal degeneration. Dvoriantchikova et al. [10] also showed 
that mouse RGC necroptosis might be caused by inflam-
matory responses induced by RIP3.

Though recent studies showed that mixed lineage 
kinase domain-like protein (MLKL) is downstream of 
RIP3 in necroptosis [11], the production of reactive oxy-
gen species (ROS) mediated by the activation of RIPs is 
probably the most studied and well accepted mechanism. 
Zhang et al. examined TNF-induced necrosis in NIH 3T3 
cells and showed that RIP3 regulates TNF-induced ROS 
overproduction by activating metabolic enzymes, lead-
ing to necrosis via damaging of cellular membranes and 
organelles [12]. Son et  al. [13] showed that Nec-1 can 
significantly reduce ROS production in Theiler’s murine 
encephalomyelitis virus (TMEV)-infected macrophages. 
Our previous studies showed that Timosaponin B-II, 
an anti-oxidative monomer extracted from Rhizoma 
anemarrhenae, reduced retinal ganglion cell-5 (RGC-5) 
cell necroptosis by inhibiting ROS accumulation [14]. 
Together, these results suggested that ROS accumulation 
might directly lead to necrosis.

In our previous study, we found that necroptosis occurs 
in RGC-5 at 24 h following elevated hydrostatic pressure 
(EHP) [15]. Moreover, our study showed that RIP3 was 
mainly expressed in RGCs in vivo in rats, and the expres-
sion of RIP3 is significantly upregulated at the early stage 
of aHIOP [16]. These results indicated that RIP3 might 
be involved in the necroptosis of RGCs following injury. 
Therefore, in our recent study we focused on the involve-
ment of RIP3 during necroptosis. In the meantime, vari-
ous pathophysiology mechanisms have been proposed 
to cause RGC damage during aHIOP in  vivo, with high 
pressure being only one aspect [15]. Ischemia–hypoxia 
of RGCs induced by compression of the central retinal 
artery following aHIOP is a more important mechanism 
[17]. Therefore, the model of OGD-induced damage (the 
classical model in  vitro to simulate ischemia–hypoxia) 
was applied in our present study to detect whether it 
could induce necroptosis in RGC-5 cells and to deter-
mine the role of RIP3 in this process. As mentioned 
above, ROS were indicated to play a direct role in 

RIP3-mediated necroptosis, so this was also explored 
simultaneously. Our study will help gain a better under-
standing of the mechanism of RGC necrosis in acute 
hypoxic-ischemic retinal diseases and provide experi-
mental evidence to determine a possible target for inhib-
iting this process in future translational medicine.

Methods
Reagents
Rabbit anti-RIP3 antibody, Nec-1, and propidium iodide 
(PI) were obtained from Sigma-Aldrich (St Louis, MO, 
USA), rabbit anti-β-tubulin was from Abcam (Cam-
bridge, UK), and the fluorescein isothiocyanate-Annexin 
V/PI apoptosis assay kit was from Clontech (Mountain 
View, CA, USA). Morpholino oligonucleotides were 
synthesized by Gene Tools, LLC (Philomath, OR, USA). 
Bicinchoninic acid assay was purchased from Pierce 
(Rockford, IL, USA). Lipid peroxidation (MDA) was 
obtained from Jian-Cheng Biotechnical Co. (Nanjing, 
Jiangsu, China). Goat anti-rabbit secondary antibody was 
obtained from Jackson Immuno Research Inc. (Lancaster, 
PA, USA).

Cell culture
Mouse RGC-5 cells were contributed by the Department 
of Ophthalmology, Second Hospital of Ji Lin University, 
China [18]. RGC-5 cells were grown in Dulbecco’s modi-
fied Eagles medium (DMEM) (HyClone Laboratories, 
Inc., Logan, UT, USA) and supplemented with 10% fetal 
bovine serum (FBS, HyClone Laboratories, Inc.), 100 U/
mL penicillin and 100  μg/mL streptomycin (HyClone 
Laboratories, Inc.). The cells were grown at 37°C under a 
humidified atmosphere of 5% CO2. The RGC-5 cells used 
in the experiment were with two to three passages post-
thawing to minimize variability in the assays based on 
our observations. The density of RGC-5 cells was around 
70% in 6 mL culture media in a 50-mL flask before OGD.

OGD model and Nec‑1 use
When the density of RGC-5 cells was around 70%, cells 
were washed twice with glucose-free DMEM (Sigma-
Aldrich), then placed in the same medium in an anaero-
bic chamber with 95% N2 and 5% CO2 for 8 h at 37°C to 
induce OGD [19, 20]. After 8 h, OGD was terminated by 
removing the cell culture flasks from the anoxic chamber 
and replacing the glucose-free DMEM with regular cul-
ture medium. The cells were then maintained in a regular 
5% CO2 incubator to recover for each time point (6 and 
12 h).

Nec-1 was dissolved in dimethyl sulfoxide (DMSO) 
(AppliChem, Gatersleben, Germany) at 1  mg/mL, and 
cells were pretreated with 10 μM for 24 h before OGD. 
After 8 h in the hypoxic chamber, OGD was stopped by 
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replacing the medium with regular culture medium con-
taining Nec-1 [21].

PI staining
At each recovery time point (6 and 12 h), the coverslips 
were washed in 0.01  M PBS for 3  min, and incubated 
in 10 μg/mL PI-dye solution at 37°C for 30 min. Subse-
quently, cells were washed in 0.01 M PBS for 3 min and 
fixed in 4% paraformaldehyde for 20  min. Then, cells 
were washed in PBS, counterstained with DAPI, and 
covered with anti-fading mounting medium before fluo-
rescence microscopy (Nikon, Eclipse 80i, Tokyo, Japan). 
Motic pathology image analysis software (Motic Inc., 
Xiamen, China) was used to count cells.

Western blot
At each survival time point, cells were homogenized on 
ice in digestion buffer [150 mM NaCl, 25 mM Tris–HCl 
(pH 7.4), 2 mM EDTA, 1.0% Triton X-100, 1.0% sodium 
deoxycholate, 0.1% SDS] containing a cocktail of protease 
inhibitors (Sigma-Aldrich). Then, the homogenates were 
centrifuged at 10,000×g for 20 min at 4°C. The superna-
tants were collected and the protein concentration was 
determined using the bicinchoninic acid assay kit. A total 
of 100 μg of protein in 62.5 mM Tris loading buffer (pH 
6.8, containing 25% glycerol, 2% SDS, 0.01% bromophe-
nol blue, and 5% β-mercaptoethanol, Bio-Rad, Hercules, 
CA, USA) was boiled for 5 min, separated by SDS–poly-
acrylamide gel electrophoresis and transferred onto a 
nitrocellulose membrane (Bio-Rad). Non-specific binding 
was blocked with PBS containing 5% nonfat milk (Bio-
Rad) and 3% bovine serum albumin (Sigma-Aldrich) for 
1  h. Membranes were incubated with anti-RIP3 (1:200) 
or anti-β-tubulin (1:1,000) antibodies overnight, washed, 
and subsequently incubated in HRP-conjugated second-
ary antibodies (1:20,000, Bio-Rad) for 2 h. Immunoblot-
ting products were visualized with an ECL Plus™ Western 
Blotting Detection kit according to the manufacturer’s 
instruction (GE Healthcare Life Sciences, NJ, USA), and 
images were captured in a Molecular Dynamics Phos-
phorimager (Nucleo Tech Inc., CA, USA). Western blot 
bands were measured with Image J (National Institutes 
of Health, MD, USA) to analyze the optical density (OD). 
The average OD of RIP3 and β-tubulin were compared, 
and the average relative value was obtained. Each experi-
ment was repeated at least three times.

Flow cytometry
The cells attached to flasks were trypsinized, followed 
by a gentle wash. Cells were resuspended in 200 μL of 
1×  binding buffer, following which 5  μL of 20  μg/mL 
AnnexinV and 10  μL of 50  mg/mL PI were added to 
the suspension, and incubated at room temperature for 

15  min in the dark. Cells were then washed and ana-
lyzed by FACSCalibur™ (Becton, Dickinson Company, 
NJ, USA). The percentages of cells in each quadrant were 
analyzed using ModFit software (Verity Software House, 
ME, USA). Statistical analyses of flow cytometry results 
were conducted by calculating the number of PI-positive 
cells. All tests were repeated three times.

Knockdown of rip3 expression using anti‑sense 
morpholinos
The expression of rip3 was inhibited using anti-sense mor-
pholino oligos, following Garlapati’s described method [22]. 
The rip3 morpholino oligo and standard control oligo were 
designed and purchased from Gene Tools LLC, whereby the 
rip3 morpholino oligo used for inhibition of rip3 translation 
had the following sequence: 5′-AGGCCATAACTTGACA 
GAAGACATC-3′. The standard control oligo sequence was 
as follows: 5′-CCTCTTACCTCAGTTACAATTTATA-3′. 
When the density of RGC-5 cells was around 80%, the cells 
were incubated with 1 μM rip3 morpholino oligo for 48 h.

Immunofluorescence staining
Coverslips with fixed cells (rip3-knockdown and normal 
control) were washed in 0.01 M PBS for 3 min, incubated 
in 5% BSA, followed by rabbit anti-RIP3 antibody (1:200) 
overnight. Then, cells were incubated with Cy3-conju-
gated donkey anti-rabbit secondary antibodies at 1:200 
(Invitrogen, Carlsbad, CA, USA), and covered with an 
anti-fading mounting medium before microscopic exam-
ination (Eclipse 80i, Nikon, Tokyo, Japan).

PCR analysis
The cells cultured in the flasks were harvested and 
RNA was isolated using TRIzol reagent (Invitrogen). 
cDNA was synthesized using Thermoscript (Inv-
itrogen) from 1  μg of total RNA. Each primer pair 
(β-actin: forward primer 5′-CAACTTGATGTATGAA 
GGCTTTGGT-3′, reverse primer 5′-ACTTTTATTGG 
TCTCAAGTCAGTGTACAG-3′; RIP3: forward primer, 
5′-GATTTTGGCCTGTCCACGTT-3′, reverse primer 
5′-CAGGCCCAACTGATGTGTCC-3′). β-actin was 
used as the normalization control. The PCR conditions 
were as follows: 94°C for 3 min, 36 cycles of 94°C for 45 s, 
55°C for 50 s, and 72°C for 2 min, with a final extension at 
72°C for 10 min.

MDA concentration assay
ROS levels were measured by MDA assay. At each sur-
vival time point, cells were digested by sonication on 
ice, in digestion buffer containing a cocktail of protease 
inhibitors. Then, the homogenates were centrifuged 
at 10,000×g for 20  min at 4°C. MDA levels in RGC-5 
extracts were assayed using a commercial kit according 
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to the manufacturer’s instruction (Jian-Cheng Biotech-
nical Co.) as described in our previous study [23]. Equal 
quantities (100  µg) of supernatant were loaded in each 
well and each analysis was performed in triplicate.

Data analysis
One-way analysis of variance was performed to test dif-
ferences in average values between groups. All results 
were presented as mean ± standard deviation. A value of 
P < 0.05 was considered statistically significant. The data 
were analyzed by using SPSS 19.0 (SPSS Inc., Chicago, IL, 
USA).

Results
Necroptosis induction following OGD
PI staining was used to distinguish necrotic cells from 
normal ones [24, 25]. PI and DAPI double labeling 
showed that there was no obvious PI staining in the nor-
mal control group (CTL), while PI-positive cells were 
observed after 6 and 12  h of re-oxygenation following 
OGD (Fig.  1a). Meanwhile, the number of PI-positive 
cells after 6  h re-oxygenation was more than after 12  h 
(P < 0.05, Fig. 1b).

The immunofluorescence results indicated that there 
was a large number of necrotic RGC-5 cells after 6 h re-
oxygenation following OGD; thus, we chose this time 
point to analyze cellular necroptosis by flow cytometry 
with PI/Annexin V double staining following pretreat-
ment with Nec-1 (RGC-5 cells were incubated with 
10 µM Nec-1 for 24 h prior to OGD). The results showed 
that necrosis occurred after OGD (Fig. 2b), but the num-
ber of necrotic (PI-positive) cells decreased significantly 
with Nec-1 pretreatment (Fig.  2c, d, P  <  0.05). These 

results indicate that RGC-5 cell necrosis can be inhibited 
by Nec-1 and that necroptosis occurred at the early stage 
of OGD.

RIP3 upregulation following OGD
The western blot results showed that RIP3 mainly exhib-
ited as a single 57-kDa band in all groups (Fig. 3a). The 
bands in the 6- and 12-h re-oxygenation groups were 
thicker than the normal control group after OGD. Statis-
tical analysis of OD values indicated that OGD up-regu-
lated the expression of RIP3 at the early stage (P < 0.05, 
Fig. 3b), with a significantly more intense RIP3 band evi-
dent in the 6-h re-oxygenation group.

Preparation of rip3‑knockdown RGC‑5 cells
RIP3 immunofluorescence revealed that when RGC-5 
cells were treated with 1 μM custom RIP3 antisense mor-
pholino oligos for 48 h, the intensity of fluorescence was 
weaker than the normal control (Fig. 4a, b). The western 
blot results showed that compared with normal RGC-5 
cells and those treated with standard control oligos, the 
expression of RIP3 in rip3-knockdown cells was reduced 
(Fig.  4c). Statistical analysis of OD indicated that the 
difference was significant (P  <  0.05, Fig.  4d). RT-PCR 
analysis showed a similar tendency at the mRNA level. 
(P < 0.05, Fig. 4e, f ). Together, these results indicate that 
rip3 knockdown in RGC-5 cells was successful.

OGD‑induced RGC‑5 necroptosis mediated by RIP3
Flow cytometry with PI/Annexin V double staining of 
rip3-knockdown and normal RGC-5 cells was applied 
to determine the involvement of RIP3 in OGD-induced 
necroptosis after 6 h re-oxygenation. The results showed 

Fig. 1  RGC-5 cell necrosis following 8 h OGD. a PI/DAPI staining of RGC-5 cells at 6 and 12 h following OGD, the small frame is the enlargement of 
the indicated area, bar 100 μm; bar 400 μm in small frame. b The statistical analysis of RGC-5 necrotic cells, * vs CTL, P < 0.05; *# vs *#, P < 0.05.
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that there were more necrotic cells in both the normal 
OGD group and rip3-knockdown OGD group compared 
with the normal control group (Fig. 5a–c). However, the 
number of PI-positive cells in the rip3-knockdown group 
was decreased significantly compared with the normal 
OGD group (P < 0.05, Fig. 5d).

MDA levels in rip3‑knockdown RGC‑5 cells decreased 
following OGD
The MDA concentration assay showed that after 6  h re-
oxygenation, MDA levels in the normal OGD group and the 
rip3-knockdown OGD group increased significantly com-
pared with the normal control group, but the level of MDA 
in the rip3-knockdown OGD group decreased significantly 
compared with the normal OGD group (P < 0.05, Fig. 6).

Discussion
As a form of regulated cell death, necroptosis has 
attracted widespread attention in recent years. A grow-
ing number of studies have confirmed the presence of 
necroptosis in many diseases. Necroptosis has been 
indicated in injured cells in tumor necrosis factor 
(TNF)-induced murine fibrosarcoma L929 cells [26], 
TNF-induced tubular epithelial cells of donor kidneys 
[27], pathogenic free-living Naegleria fowleri-induced 
Jurkat T cells [28], TNF-related apoptosis-inducing ligand 
(TRAIL)-induced HepG2 cells [29], and acetaminophen-
induced acute liver failure, to name a few [30]. Necropto-
sis was first found in non-neuronal cells; however, recent 
studies indicated it could also occur in neurons. Studies 
showed that in rat spinal cord injury, Nec-1 could protect 

Fig. 2  Ratio of necrotic cells is reduced following Nec-1 pre-treatment by OGD. a Normal control cells; b RGC-5 cell necrosis after OGD; c RGC-5 
cells were pre-treated with Nec-1 (10 μM) to block necroptosis for 24 h before OGD and analysis of necroptotic cells. Cells were stained with 
Annexin fluorescein isothiocyanate and PI, and analyzed by FACS using FL1 (Annexin V) and FL3 (PI) channels. d The statistical analysis of RGC-5 
necrosis, * vs CTL, P < 0.05; # vs Nec-1 pre-treatment, P < 0.05.
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neurons and improve physiological function at the early 
stage [31]. Dai et  al. [32] revealed that necroptosis 
occurred in primary cortical neurons, which were injured 
by ferrous chloride. Li et al. [33] reported that 2 h after 
exposure to N-methyl-d-aspartic acid (NMDA), necrop-
tosis occurred in cultured cortical neurons. Rosenbaum 
et  al. [6] found a number of necroptotic cells in the rat 
retinal ganglion cell layer at 6 h after aHIOP. Our previ-
ous studies also indicated that necroptosis occurred in 
RGC-5 cells at an early stage following elevated hydro-
static pressure in vitro [15] or 300 μM hydrogen peroxide 
(H2O2) treatment [14]. Recently, in vitro models of OGD 
have been widely applied to simulate neuronal ischemia 
in  vivo. Wang et  al. [34] reported that the OGD model 
(6 h OGD followed by 24 h re-oxygenation) in cultured 
cortical neurons mimicked cerebral ischemia, and Tasca 
et  al. [35] induced OGD in primary neurons to mimic 
the cellular death observed in models of brain ischemia 
in vivo. Therefore, we chose the OGD model in this study 
and the data indicated that necrosis occurred following 
8  h OGD, with the number of necrotic cells increasing 
obviously after 6 and 12  h re-oxygenation. Flow cytom-
etry also detected more necrotic cells at 6 h after re-oxy-
genation. More importantly, the number of necrotic cells 
significantly reduced following pretreatment with Nec-1. 
Together, these results suggest that necroptosis might be 
a form of cell death that widely exists in injured cells.

Many scientists have investigated the regulatory 
mechanism of necroptosis. Many different molecules 
were considered to participate in the occurrence and 
regulation of necroptosis, such as HtrA2/Omi, ubiqui-
tin C-terminal hydrolase (UCH-L1) [36], CDGSH iron-
sulfur domain-containing protein 1 (CISD1) [37], and 
calpain [38]. Of the numerous pathways investigated for 
their involvement in necroptosis, the RIP signaling path-
way was the one that was first studied and gained the 
most attention. For instance, previous studies indicated 
that the expression of RIP1 was upregulated in OGD-
induced neuronal damage and mediated necroptosis 
[3]. Roychowdhury et  al. [39] revealed that RIP3-driven 
necroptosis was a key step of ethanol-induced hepatocyte 
injury. A recent study showed that RIP3 interacted with 
RIP1 via the RIP homotypic interaction motif (RHIM), 
when apoptosis was interrupted and, therefore, induced 
necroptosis by direct or indirect phosphorylation [40]. 
Phosphorylation of RIP3 promoted the phosphoryla-
tion of RIP1, which activated key enzymes of metabolic 
pathways and increased ROS production, thereby induc-
ing necroptosis [41]. More recently, a study showed that 
following mutation of rip3, carbobenzoxy-valyl-alanyl-
aspartyl-[O-methyl]-fluoromethylketone (zVAD) inhib-
ited TNF-α induced apoptosis, but did not promote 
necroptosis, Therefore, RIP3 was the key target regulat-
ing necroptosis [12]. Our previous study indicated that 
the expression of RIP3 was upregulated at the early stage 
of aHIOP [16]. Thus, in this study, we focused on con-
firming the involvement of RIP3 in OGD-induced RGC-5 
necroptosis. The western blot results showed that after 
8 h OGD and 6 or 12 h re-oxygenation, RIP3 expression 
was significantly upregulated, suggesting that the RIP3 
upregulation may be related to OGD-induced necrop-
tosis. When rip3 was knocked down using morpholino 
oligos, flow cytometry results showed that the number 
of necrotic cells was significantly reduced compared with 
the normal OGD group. Again, these results suggest that 
RIP3 is a key molecule mediating OGD-induced RGC-5 
cell necroptosis. Furthermore, we observed that the MDA 
concentration, which describes the degree of oxidant 
stress, increased significantly after OGD compared with 
the normal control. Furthermore, MDA concentration 
decreased significantly in rip3-knockdown cells com-
pared with normal controls following OGD. According 
to the data described herein, we speculated that OGD-
induced RGC-5 necroptosis might be caused by RIP3 
upregulation-mediated ROS accumulation resulting in 
necrosis. Shindo et al. [42] also reported similar results, 
whereby RIP-mediated necroptosis was associated with 
ROS accumulation in mouse embryo fibroblasts (MEFs).

Though RIP3 was shown to regulate OGD-induced 
RGC-5 necroptosis, the flow cytometry results showed 

Fig. 3  RIP3 protein expression is up-regulated after OGD. a Western 
blot bands of RIP3 and β-tubulin expression; b OD analysis of RIP3; 
error bars represent standard deviation, * vs CTL, P < 0.05; # vs #, 
P < 0.05.
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that it was not completely inhibited when the expres-
sion of RIP3 was inhibited. Furthermore, the level of 
MDA was higher in rip3-knockdown RGC-5 OGD group 
compared with normal control group. We speculated 
that there are three reasons that may account for this 
phenomenon. First, there might exist other necroptosis-
independent forms of cell death responsible for RGC-5 
cell necrosis. Second, although RIP3 was inhibited by 
morpholino oligo, the expression of RIP3 was not com-
pletely inhibited, therefore the remaining RIP3 could still 
partially maintain function. Third, many other molecules, 
such as calpain, HtrA2/Omi, UCH-L1, and CISD1, could 
be involved in the regulation of necroptosis, whereby the 
RIP3 signaling pathway would not be the unique regula-
tory mechanism.

It should be noted that our results show that changes 
in the ratio in upper left quadrants in the Nec-1 pretreat-
ment group were less than rip3 knockdown group follow-
ing OGD, whereas changes in upper right quadrants in 
the Nec-1 pretreatment group were more than the rip3 
knockdown group following OGD. Based on Ormerod’s 
analysis of flow cytometry results [43], the upper left (UL) 
quadrant contains dead cells or cell fragments, the upper 
right (UR) quadrant contains necrotic or late apoptotic 
cells. Moreover, in vivo aHIOP [44, 45] or in vitro OGD 
[46] analyses revealed that the majority of RGC deaths 
were necrotic like at the early stage (3, 4, or 12 h) of reti-
nal ischemia, whereas apoptosis occurs at 24  h or later 
after ischemia. Therefore, we speculated that the protec-
tive effect of Nec-1 pretreatment was not as effective as 

Fig. 4  Establishment of RGC-5 rip3 knockdown cell line. RIP3 immunofluorescence staining of RGC-5 cells after rip3 knockdown (a normal RGC-5; b 
rip3-knockdown RGC-5). Western blot results (c, d). PCR results (e, f), bar 20 μm in a, b, * vs CTL, P < 0.05.
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rip3 knockdown in strongly necrotic cells after OGD and 
6 h re-oxygenation. However, further research is required 
to confirm these findings.

In conclusion, our results indicate that RIP3 induces 
RGC-5 cell necroptosis following OGD via ROS accu-
mulation. Our research may help find a suitable bio-
logical target, such as RIP3 or ROS, to prevent RGC 
necroptosis.
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