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Decreased neural activity and neural 
connectivity while performing a set‑shifting task 
after inhibiting repetitive transcranial magnetic 
stimulation on the left dorsal prefrontal cortex
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Abstract 

Background:  Sub-optimal functioning of the dorsal prefrontal cortex (PFC) is associated with executive dysfunc-
tion, such as set-shifting deficits, in neurological and psychiatric disorders. We tested this hypothesis by investigating 
the effect of low-frequency ‘inhibiting’ off-line repetitive transcranial magnetic stimulation (rTMS) on the left dorsal 
prefrontal cortex on behavioural performance, neural activity, and network connectivity during the performance of a 
set-shifting paradigm in healthy elderly (mean age 50+).

Results:  Behaviorally, we found a group-by-session interaction for errors on set-shift trials, although post hoc tests 
did not yield significant findings. In addition, the verum group, when compared with the sham group, displayed 
reduced task-related activity in the left temporal gyrus, and reduced task-related connectivity of the left PFC with the 
left postcentral gyrus and posterior insula.

Conclusion:  These results show that low-frequency off-line rTMS on the left dorsal PFC resulted in reduced task-
related activity and network connectivity, which was accompanied by a subtle behavioural effect, thereby further 
corroborating the importance of an optimally functioning PFC in set-shifting.

Keywords:  Key-words, Set-shifting, Low-frequency repetitive transcranial magnetic stimulation, Functional magnetic 
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Background
The dorsal fronto-striatal circuit plays an important role 
in executive functions [1]. One of these functions is set-
shifting, which refers to the ability to reconfigure task sets 
in a flexible manner in order to meet changing demands 
[2]. Patients with psychiatric (e.g. obsessive–compul-
sive disorder [3], schizophrenia [4]) or neurological (e.g. 
Parkinson’s disease [5, 6]) disorders, often suffer from 
executive dysfunction, presumably because of impaired 
fronto-striatal function.

Applying low-frequency (1–4  Hz) repetitive transcra-
nial magnetic stimulation (rTMS) [7] over the motor cor-
tex leads to decreased cortical excitability [8, 9], which 
is, depending on the intensity and duration of the stim-
ulation, detectable up to 30–60 min afterwards [7]. It is 
assumed that rTMS induces similar effects in more asso-
ciative areas [10, 11]. This temporary inhibitory charac-
teristic of low-frequency rTMS can be used to simulate 
decreased functioning of prefrontal regions.

Such an approach can be employed in healthy partici-
pants to induce a “virtual lesion” [12] similar to that of 
patients with psychiatric and neurological disorders. 
Especially in combination with neuroimaging modalities 
such as functional magnetic resonance imaging (fMRI), 
TMS has the potential to extend our knowledge of neural 
circuits that are involved in psychiatric or neurological 
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disorders and provide us with the opportunity to make 
causal statements about the function of certain brain 
areas [13]. For example, a previous fMRI study by our 
group showed that low-frequency off-line rTMS on the 
left dorsolateral prefrontal cortex (DLPFC) in young 
healthy participants resulted in decreased task-related 
activations in the frontal and visuospatial regions, and 
a decrease in behavioural performance, while perform-
ing a planning task [14]. Although it is increasingly rec-
ognized that alterations in brain activity often represent 
alterations in brain networks and functional connectivity 
[15], that can be induced by rTMS [16, 17], our previous 
analyses did not investigate whether rTMS also induced 
changes in functional connectivity. Since it is theorized 
that functional connectivity results from a synchronous 
neuronal firing pattern [18–20], and because inhibitory 
rTMS perturbs normal brain functioning, we expect that 
the stimulation will lead to a desynchronization in fir-
ing frequency, thus inducing a decrease in task-related 
functional connectivity of the stimulated area with other 
task-related areas (within the fronto-striatal and fronto-
parietal circuits).

To further investigate the involvement of the prefron-
tal cortex (PFC), and connected areas, in set-shifting, a 
group of forty healthy (aged 50+) participants first per-
formed a newly developed set-shifting paradigm in an 
MRI scanner during a baseline condition. This new para-
digm mirrors the classic Wisconsin Card Sorting Task 
[21] with respect to switching after negative feedback, 
but depends less on other cognitive constructs (e.g. work-
ing memory, matching-to-sample, set-formation [22]) 
that are often present in set-shifting paradigms. They 
were then randomly assigned to receive either rTMS at 
the PFC (verum) or vertex (sham) during a second ses-
sion, while using the first MRI scan to determine the 
most optimal stimulation location. We hypothesized that 
the verum rTMS group, when compared with the sham 
group, would display an increase in errors on set-shift tri-
als, decreased activation in task-related brain areas, i.e. 
the dorsal fronto-striatal and fronto-parietal areas, and 
decreased connectivity between the left dorsal PFC and 
other task-related brain areas during the second session, 
when compared with the first.

Results
Demographics and characteristics
The sham and verum group were well matched with 
respect to age (p =  .61), gender (p =  .62), handedness 
(p  =  .60), and MMSE score (p  =  .36), but the sham 
group had a higher education level (p =  .04) and esti-
mated IQ score (p =  .01). The groups also did not differ 
in BDI (p =  .33) or BAI (p =  .61) scores, and the inter-
val between the first and second session, and the interval 

between the end of the stimulation and the beginning of 
the task, was equal for both groups (see Table 1).

Behavioral results
The average RTs on correct repeat trials did not differ 
between the sham and verum group [F(1,  31)  =  0.47; 
p =  .50], but the RTs did decrease from session one to 
session two [F(1, 31) = 12.85; p =  .001]. This effect was 
equal for both groups [F(1,  31)  =  0.92; p  =  .34] (see 
Figure 1a).

The average RTs on correct switch trials was similar for 
both groups [F(1, 31) = 0.31; p = .58]. There was a trend-
significant decrease from session one to session two 
[F(1, 31) = 3.02; p = .09]. This effect was similar for both 
groups [F(1, 31) = 0.46; p = .50] (see Figure 1b).

For the percentage of failed repeat trials, we found no 
main effect for group [F(1, 31) = <.01; p =  .96], session 
[F(1, 31) = 2.47; p = .13], or a group-by-session interac-
tion [F(1, 31) = 0.90; p = .96] (see Figure 1c).

For the percentage of failed switch trials, we found no 
main effect for group [F(1,  31) =  0.26; p =  .62] or ses-
sion [F(1,  31) =  0.33; p =  .57]. There was a significant 
group-by-session interaction effect [F(1,  31)  =  4.62; 
p =  .04]; post hoc tests indicated that the verum group, 
compared with the sham group, had a trend-significantly 
increased percentage of failed switch trials on session 
two (U = 183; p = .09), but not on session one (U = 112; 
p = .40) (see Figure 1d).

No main effect of group [F(1, 31) = 0.04; p = .84], ses-
sion [F(1,  31)  =  1.52; p  =  .23], or a group-by-session 
interaction [F(1, 31) = <.01; p = .98] was found for switch 
costs (see Figure 1e).

Imaging results
Main effect of task
We found a robust effect of task (“shift > repeat” contrast) 
on the first session in the bilateral inferior parietal cortex, 
left precuneus, bilateral middle frontal gyrus, right mid-
dle temporal gyrus, and left inferior temporal gyrus (see 
Table 2; Figure 2a for the task effects during session one 
for the whole group; for the task effects per group during 
session two see Table 3).

Group × session interaction effects
During session one, no differences in task-related activa-
tion between the two groups were found. Within-group 
comparisons showed that during the second, compared 
with the first session, the sham group showed decreased 
activation of the right medial PFC (see Figure 2b), and the 
verum group decreased activation of the bilateral temporal 
cortex and left anterior cingulate cortex (see Figure 2c). For 
both groups, no areas were more active on the second ses-
sion when compared with the first. The group-by-session 



Page 3 of 16Gerrits et al. BMC Neurosci  (2015) 16:45 

interaction analysis showed that the verum group, when 
compared with the sham group, activated the left middle 
temporal cortex more on session one when compared with 
session two (see Figure 2d). In contrast, the sham group, 
when compared with the verum group, did not activate 
more brain areas on the first session when compared with 
the second session (see Table 2).

Our ROI-based results showed that the activation 
of the left dorsal PFC did not differ in activity between 
groups [F(1,  31)  =  .15; p  =  .71] or between sessions 
[F(1, 31) =  .17; p =  .68], and no group-by-session inter-
action effect [F(1,  31) =  .26; p =  .61] were found (see 
Figure 1f ) (Table 4).

Connectivity analyses
In both groups, the seed region (the left dorsal PFC) dis-
played more functional connectivity with the bilateral 
precuneus, bilateral medial PFC, bilateral inferior parietal 

cortex, and left superior frontal gyrus during set-shift 
trials when compared with repeat trials (see Figure  3a; 
Table 5).

No between-session differences in functional connec-
tivity were found for either the verum or the sham group 
during the first session.

The connectivity analyses showed a group-by-session 
interaction effect: in the verum group, when compared 
with the sham group, the functional connectivity of the 
seed regions with the left postcentral gyrus, and left pos-
terior insula was decreased during session two when 
compared with session one (see Figure 3b; Table 6).

For the sham group, we found that more task-related 
functional connectivity of the left PFC with the right 
superior temporal gyrus, right inferior frontal gyrus and 
right insula correlated negatively with errors on the shift 
trials. For the verum group, no voxels reached the statisti-
cal threshold for this analysis (see also Figure 3c; Table 7).

Table 1  Demographic, clinical, and behavioural characteristics

Values are presented as mean ± standard deviation or median (range) unless indicated otherwise.

MMSE mini-mental state examination, BDI Beck depression inventory, BAI Beck anxiety inventory.
a  Independent samples t test.
b  Pearson’s χ2 test.
c  Fisher’s exact test.
d  Independent samples Mann–Whitney U test.
e  Education level was measured in 7 levels ranging from 1 (no finished education) to 7 (university training).

Sham (N = 17) Verum (N = 16) p value

Demographics

Age (years) 57 ± 10 (41–70) 55 ± 9 (39–75) .61a

Gender (% men) 11 (65%) 9 (56%) .62b

Educatione 6 (3–7) 6 (4–7) .04b

IQ estimation 110 ± 14 (82–130) 98 ± 12 (73–123) .01a

Handedness (right) 16 (94%) 14 (88%) .60c

Clinical measures

MMSE 29 (27–30) 29 (28–30) .36d

BDI 1 (0–4) 2 (0–10) .33d

BAI 1 (0–5) 1 (0–11) .61d

Stimulation measures

Interval session 1–session 2 (days) 14 (7–35) 15 (6–28) .93d

Interval stimulation–task (s) 356 (277–800) 319 (240–488) .053d

Behavioural measures

Session 1: RT correct repeat trials (ms) 820 ± 201 (503–1,182) 849 ± 212 (540–1,269)

Session 2: RT correct repeat trials (ms) 738 ± 210 (483–1,167) 803 ± 191 (479–1,150)

Session 1: RT correct switch trials (ms) 901 ± 210 (519–1,286) 927 ± 230 (623–1,354)

Session 2: RT correct switch trials (ms) 842 ± 240 (541–1,286) 901 ± 244 (517–1,324)

Session 1: Switch costs (ms) 68 (−24–341) 61 (−23–269)

Session 2: Switch costs (ms) 107 (−5–201) 79 (1–234)

Session 1: Failed repeat trials (% of total) .76 (0–4.08) .73 (0–4.21)

Session 2: Failed repeat trials (% of total) .71 (0–4.78) .55 (0–3.51)

Session 1: Failed switch trials (% of total) .37 (0–3.79) .18 (0–2.19)

Session 2: Failed switch trials (% of total) 0 (0–1.76) .74 (0–3.51)
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Discussion
We investigated the effect of low-frequency rTMS on the 
left dorsal PFC on behavioural performance, task-related 
neural activity, and network connectivity in a group of 
elderly healthy controls, while performing a feedback-
based set-shifting paradigm. We found a significant 

group-by-session interaction effect on errors during set-
shift trials after low-frequency stimulation, which was 
accompanied by a decrease in task-related activation of 
the left temporal cortex, and a decrease in functional 
connectivity of the left dorsal PFC with the left postcen-
tral gyrus and posterior insula.

Figure 1  Behavioral data and extracted parameter estimates of the ROIs per group, per session. None of the differences reached significance, 
except a group-by-session interaction for the failed shift trials (p = .04). Post-hoc tests revealed that the verum group made marginally more errors 
on the second session (p = .09). All values represent the mean; error bars represent the standard error of the mean (SEM).

Table 2  Main effect of task (=shift > repeat) across all subjects on the first session

Shift > Repeat significant at a threshold of p = .05 (FWE-corrected) with an extent threshold of k > 10.

BA Brodmann area.

Area BA L/R t value Cluster size Peak coordinates (MNI)

X Y Z

Inferior parietal cortex 40 L 14.93 3,883 −51 −49 43

40 R 11.65 48 −46 46

Precuneus 7 L 13.15 −12 −70 49

Middle frontal gyrus 6 R 12.23 5,675 42 5 52

9 L 11.94 −48 8 37

46 R 11.29 36 47 25

Middle temporal gyrus 21 R 10.32 2,160 66 −31 −5

21 R 9.72 57 −25 −11

37 L 9.93 −51 −61 −8
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We found the behavioral group-by-session interaction 
effect only for the percentage of errors on set-shift trials, 
indicating that the induced ‘virtual lesion’ was selective 
for this trial type and did not influence performance on 
repeat trials. Although post hoc tests did not reach signif-
icance, the verum group decreased numerically, whereas 
the sham group increased in performance over sessions, 
as hypothesised.

Both groups had decreased RTs on correct repeat and 
correct set-shift trials during session two compared with 
session one, which we attribute to a learning effect.

Switch costs showed no session, group, or group-by-
session interaction effects. Although this measure is an 
often employed indication for behavioural performance 
in the set-shifting literature, they are typically  a more 
sensitive measure for performance in rule-based than in 

Session 1: Switch > Repeat (N=33)

Sham: Session 1 > Session 2 (N=16)

Verum: Session 1 > Session 2 (N=17)

Verum > Sham Session 1 > Session 2 (N=33)

a

b

c

d

x=-12 y=24 z=53

x=3 y=47 z=31

x=-6 y=-25 z=1

x=-51 y=-26 z=12

Figure 2  Main effect of task on activity and interaction effects. T-statistic images for the switch > repeat contrast. Threshold at p = .05, whole-brain 
family-wise error-corrected, with an extent of k > 10 for the main effect (a), and p = .001 (uncorrected) with an extent-threshold of k > 5 for the 
interaction effects (b, c, d), overlain on ch2better MNI template with MRIcron. (http://www.mccauslandcenter.sc.edu/mricro/mricron). Coordinates 
are in MNI space. The colored bar indicates the Z values.

http://www.mccauslandcenter.sc.edu/mricro/mricron
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Table 3  Main effects of task (contrast: shift > repeat) on the second session, per group

Area BA L/R t value Cluster size Peak coordinates (MNI)

X Y Z

Session 2: Sham (N = 17)

Inferior parietal lobe 7 L 16.97 1,401 −33 −52 46

7 L 14.10 −12 −70 49

40 R 13.69 36 −52 49

Middle frontal gyrus 46 L 12.91 78 −39 50 19

46 R 8.87 69 42 44 25

46 R 8.60 36 50 10

9 L 9.74 77 −48 8 34

9 L 9.47 −42 −4 34

8 L 8.69 91 −27 5 52

6 L 8.60 −21 −10 52

6 L 7.30 −39 2 58

6 R 7.60 23 39 2 55

6 R 7.04 30 2 64

6 R 7.04 30 −4 58

9 R 8.14 39 51 11 43

Inferior frontal gyrus 46 R 7.36 54 20 28

Medial frontal gyrus 6 R 7.38 17 3 14 52

Frontal operculum 47 R 7.93 23 33 23 4

47 L 8.61 97 −27 20 4

47 L 7.73 −24 29 −5

Putamen L 7.43 −21 17 −5

L 7.56 14 −15 −4 −2

R 7.13 13 21 14 −5

R 6.94 21 14 4

Dorsomedial thalamus R 8.42 20 6 −16 13

L 9.28 40 −6 −22 10

Inferior temporal gyrus 37 R 7.69 34 48 −55 −14

37 R 7.25 48 −54 −14

37 L 9.69 60 −48 −49 −8

37 L 8.20 −51 −58 −11

37 L 7.69 −51 −37 −8

Middle occipital gyrus 19 R 6.92 51 −70 −8

19 L 7.95 13 −36 −79 −17

Cerebellum R 10.31 146 39 −55 −26

R 9.21 30 −70 −23

Session 2: Verum (N = 16)

Inferior parietal cortex 40 L 11.34 266 −51 −40 37

40 L 10.72 −36 −46 37

40 L 10.12 −39 −52 46

40 R 10.40 160 39 −49 40

40 R 10.26 48 −46 43

40 R 9.19 54 −37 43

7 R 10.17 34 9 −73 46

Superior parietal cortex 7 L 8.10 11 −9 −64 52

7 R 11.05 66 33 −64 49

Superior occipital gyrus 19 R 10.84 33 −73 34

Precentral gyrus 6 L 9.83 98 −30 2 43
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feedback-based paradigms [2]. In rule-based paradigms, 
an extrinsic signal (e.g. background colour) at the begin-
ning of a trial indicates that the presented target stimu-
lus has to be classified according to another feature (i.e. 
a set-shift trial), thereby capturing the actual mental 
set-shift, which is typically reflected in increased switch 
costs. However, because information about an upcoming 
set-shift makes it less difficult to perform the set-shift, 
which is reflected in reduced switch costs and errors [23], 
and because this preparation effect increases with longer 
preparation time [24, 25], the signalling of an upcoming 
set-shift trial typically results in an underestimation of 
the true switch costs, such as in our feedback-based para-
digm. The absence of an effect of TMS on switch costs in 
our study might thus be a true negative finding, or might 
be due to the insensitivity of this measure in feedback-
based set-shifting tasks.

We found robust task-related activation of fronto-pari-
etal areas during the set-shift trials, across both groups, 
especially in the bilateral parietal cortex, bilateral pre-
frontal cortex, and bilateral middle temporal gyri. These 
areas are in accordance with meta-analyses on set-shift-
ing [26–28]. It is important to emphasize that no dif-
ferences in task-related brain activation between both 
groups were found during the first session, thus indicat-
ing that there were no group differences at baseline.

We found, only for the verum group, decreased acti-
vation in the left temporal cortex at the second session, 
when compared with the first, indicating that inhibiting 
rTMS decreased the neural activity in task-related brain 
areas in the left hemisphere. The temporal lobe is associ-
ated with context dependent set-shifting [28], a sub-type 

of set-shifting on which our task also critically depends. 
We hypothesize that the decrease in activation in the left 
inferior temporal lobe underlies the increase in errors 
on the set-shift trials. In contrast to our hypothesis, no 
modulation of task-related activation was found in the 
fronto-striatal or fronto-parietal network. We know from 
previous studies that the effects of rTMS are not limited 
to the stimulated area, but also affect activity in the cir-
cuit that the area is part of, through structural or func-
tional connectivity [11, 14, 29].

Task-related functional connectivity analyses showed 
that in both groups the left dorsal PFC was more con-
nected with the bilateral precuneus, bilateral medial 
PFC, bilateral inferior parietal cortex, and left superior 
frontal gyrus during switch trials when compared with 
repeat trials. Although some of these areas are associ-
ated with the default mode network (DMN) [30], a brain 
network that becomes active during rest [31] or during 
a low-demanding baseline condition [32], other theories 
state that these areas are so-called “flexible hubs” that 
are essential for relaying information during task perfor-
mance [33].

We found, only for the verum group, a decrease in 
functional connectivity of the left dorsal PFC with the 
postcentral gyrus and posterior insula after rTMS, but 
not within the a priori expected areas, such as regions 
within the fronto-striatal or fronto-parietal circuits. 
Altered task-related functional connectivity between the 
left dorsal PFC and other task-related brain regions might 
result in less efficient information processing through the 
task-related network and consequently results in reduced 
behavioral performance. The results from the regression 

Table 3  continued

Area BA L/R t value Cluster size Peak coordinates (MNI)

X Y Z

Middle frontal gyrus 6 L 9.81 −18 −1 61

6 L 8.95 −24 −7 58

Middle frontal gyrus 6 R 9.60 48 24 2 58

6 R 8.67 27 −7 58

46 L 9.79 24 −45 29 31

Inferior frontal gyrus 45 R 10.44 34 54 23 25

45 R 8.09 57 11 25

Middle temporal gyrus 39 L 9.62 10 −30 −70 25

Cerebellum R 13.90 163 30 −64 −20

R 8.47 36 −52 −32

L 9.21 122 −27 −64 −26

L 9.01 −33 −67 −20

L 8.54 −42 −64 −29

Significant at a threshold of p = .05 (FWE-corrected) with an extent threshold of k > 10.

BA Brodmann area.
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analysis on the relation between behavioural task per-
formance and task-related functional connectivity after 
real versus sham rTMS suggest that higher connectivity 
between the PFC and right fronto-temporal areas was 
important for better task performance, and that this rela-
tion was absent in the verum group, possibly because 
of the rTMS. This finding further substantiates the idea 
that rTMS disturbs healthy brain function and influences 
behaviour accordingly.

Combining rTMS and task-related fMRI pro-
vides insight into both behavioral and neural effects 
of the experimental modulation on brain excitabil-
ity. Although we found a behavioral and neural defi-
cit after inhibiting rTMS, the effects were subtle and 
outside the expected fronto-striatal or fronto-parietal 
networks. Based on the low percentage of failed set-
shift trials in both groups during both sessions, we 
hypothesize that these networks might not have been 
optimally challenged due to the simplicity of our task 
and that therefore the modulation of cortical excit-
ability within these areas might have occurred sub-
threshold. We, therefore, recommend future studies to 
employ a cognitively more demanding behavioral task 

to investigate the induced neural modulation effects 
more extensively.

Our findings confirm the importance of the dorsal PFC 
in executive functioning and corroborate previous find-
ings about how PFC dysfunction can lead to executive 
dysfunction in diseases such as obsessive–compulsive 
disorder [3], schizophrenia [4], and Parkinson’s dis-
ease [5, 6]. One might extrapolate that using excitatory, 
instead of inhibitory rTMS, on the PFC could normalize 
prefrontal functioning, thus leading to improvements in 
executive functions in these patients, and might poten-
tially provide an adjuvant therapy for cognitive rehabilita-
tion. This hypothesis is further strengthened by a recent 
meta-analysis that shows that off-line high-frequency 
brain stimulation on the left DLPFC increases behavioral 
performance on a working memory task [34].

The current study has some methodological strengths, 
such as the simplicity of the set-shifting paradigm, the 
individually fMRI-determined stimulation locations, 
and investigating the effect of rTMS on both neural task-
related neural activity and connectivity. However, using 
a new developed paradigm also limits the comparabil-
ity to earlier studies, and, as discussed previously, the 

Table 4  Session and group-by-session interaction effects for the contrast shift > repeat

Effects are depicted at p = .001 (uncorrected) threshold with an extent threshold of k > 5.

Area BA L/R t value Cluster size Peak coordinates (MNI)

X Y Z

Session1: Sham > Verum

No significant results to display

Session 1: Verum > Sham

No significant results to display

Sham: Session 1 > Session 2

Middle frontal gyrus 9 R 3.98 6 3 47 31

Sham: Session 2 > Session 1

No significant results to display

Verum: Session 1 > Session 2

Middle temporal gyrus 21 L 6.76 44 −57 −22 −8

21 R 4.46 5 57 −4 −17

21 R 4.22 6 54 −43 1

39 L 4.17 28 −48 −64 10

Cingulate gyrus 32 L 5.06 20 −3 44 7

Verum: Session 2 > Session 1

No significant results to display

Sham > Verum Session 1 > Session 2

No significant results to display

Verum > Sham Session 1 > Session 2

Middle temporal gyrus 22 L 3.83 20 −39 −61 7

22 L 3.81 −48 −64 10

21 L 3.57 6 −57 −22 −5
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paradigm might cognitively not have been demanding 
enough. From a more methodological perspective, we 
might have overestimated the stimulation threshold by 
visually assessing the resting motor threshold when com-
pared with procedures employing EMG. Our rTMS pro-
cedure, furthermore, assumes equal cortical excitability 
in both motor cortex as prefrontal areas. Although this 
is a commonly employed routine in the TMS literature, 
it is not necessarily a valid assumption [35]. These two 
issues should be considered and might be a complication 
for replication studies in the future. Also, our decision to 
use optimally targeted, individual fMRI-guided neuro-
navigation meant that we were bound to stimulate at a 
second session, possibly leading to learning effects, that 
potentially could have reduced the effect of our manipu-
lation. Last is the use of off-line rTMS: since the effect of 

rTMS wears off with time, the time window to measure 
the effect of the stimulation is only limited. This might be 
overcome by using on-line stimulation using MRI-com-
patible TMS equipment.

Conclusions
To conclude, we applied off-line inhibitory rTMS on 
the left dorsal PFC in a group of healthy controls while 
performing a simplified set-shifting paradigm with high 
construct validity. We found that the participants in the 
verum group had decreased task-related activity in the 
left temporal lobe, and displayed reduced functional con-
nectivity of the left dorsal PFC with other task-related 
areas in the left hemisphere, which was accompanied 
by a subtle behavioral effect. These results emphasize 
the importance of the dorsal PFC for adequate executive 

Session 1: Switch > Repeat (N=33)

Verum > Sham Session 1 > Session 2 (N=33)

a

b

x=-10 y=-58 z=24

x=-57 y=-35 z=19

c Sham session 2 Failed Set-Shift (N=17) 

x=48 y=8 z=-9

Figure 3  Main effect of task on functional connectivity, interaction effects, and negative correlation between functional connectivity and number 
of errors on set-shift trials during the second session for the sham group. T statistic images for the switch > repeat contrast. Threshold at p = .001 
(uncorrected) with an extent of k > 10 for the main effect (a), and p = .001 (uncorrected) with an extent-threshold of k > 5 for the interaction effects 
and regression (b, c) overlain on ch2better MNI template with MRIcron (http://www.mccauslandcenter.sc.edu/mricro/mricron). Coordinates are in 
MNI space. The colored bar indicates the Z values.

http://www.mccauslandcenter.sc.edu/mricro/mricron
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functions and, furthermore, put forward the possibility of 
using rTMS in the future as a tool to improve impaired 
executive functioning in patients with frontal-striatal dis-
orders using excitatory rTMS.

Methods
Participants
This cohort of healthy participants was initially recruited 
as control group for a different study [36], for which we 
employed the following inclusion criteria: healthy control 
participants should (1) not suffer from a neurological or 
psychiatric illness, or have a history of substance abuse, 
(2) not display cognitive complaints/deficits, (3) not have 
a history of epilepsy, and (4) match the demographics 
(i.e. age, sex, education, handedness) of our cohort of 
Parkinson’s disease patients. Forty healthy participants 
were randomly appointed to the verum (N  =  20) or 
sham (N =  20) rTMS condition. A number of subjects 
was, however, excluded from the final analyses due to (1) 
problems during data acquisition (1 verum), (2) exces-
sive movements (more than 3  mm/3°) during scanning 

(2 sham; 1 verum), (3) discrepancy between stimula-
tion location and stimulated location (1 verum), and (4) 
extreme scores on inaccuracy (more than two standard 
deviations from the median) in comparison with their 
own group (1 sham; 1 verum), rendering our total sam-
ple size 16 participants (mean age of 55 ± 9 years) in the 
verum rTMS condition and 17 age and gender matched 
participants (mean age of 57  ±  10  years) in the sham 
rTMS condition.

We screened all participants for the presence of psy-
chiatric disorders using the Structured Clinical Interview 
for DSM-IV Axis-I Disorders (SCID-I) [37], depressive 
symptoms using the Beck Depression Inventory (BDI) 
[38], anxiety symptoms using the Beck Anxiety Index 
(BAI) [39], and general cognitive status using the Mini-
Mental State Examination (MMSE) [40]. Handedness 
was assessed using the Edinburgh handedness inventory 
[41]. The study protocol was reviewed and approved by 
Research Ethics Committee of the VU University Medical 
Center (VUmc) and all participants provided informed 
consent.

Table 5  Main effects of functional connectivity (contrast: shift > repeat) across all subjects per session

Shift > Repeat significant at a threshold of p = .001 (uncorrected) with an extent threshold of k > 10.

BA Brodmann area.

Area BA L/R t value Cluster size Peak coordinates (MNI)

X Y Z

Session 1 (N = 33)

Precuneus 7 L 6.99 423 −6 −52 31

L 3.87 −9 −46 1

Superior frontal gyrus 8 L 5.40 77 −18 26 52

Medial frontal gyrus 10 R 5.05 201 9 62 7

Anterior cingulate gyrus 32 L 4.84 −6 53 7

32 R 3.86 6 47 4

Superior temporal gyrus 39 R 5.00 13 57 −61 25

39 L 4.72 179 −42 −64 28

Angular gyrus 39 L 4.70 −45 −70 34

Middle temporal gyrus 39 L 4.44 −51 −67 16

Session 2 (N = 33)

Posterior cingulate gyrus 31 L 4.68 205 −12 −55 28

31 R 4.13 12 −55 25

31 L 3.75 27 −3 −25 34

Inferior frontal gyrus 45 L 4.42 50 −45 26 19

46 L 3.69 −45 35 10

44 L 4.05 22 −51 14 31

Thalamus R 4.20 10 6 −4 4

Superior temporal gyrus 39 R 3.94 21 48 −55 22

39 R 3.92 57 −61 16

Middle temporal gyrus 39 L 3.71 11 −51 −61 16
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Experimental procedure
Participants were enrolled into a two-arm, randomised 
and single-blind study design in which they visited the 
VUmc on three separate occasions. On the first, they 
performed cognitive tests, were screened for mental dis-
orders, and practiced the set-shifting task. On the sec-
ond occasion, they performed the set-shifting task in an 
MRI scanner, after which the fMRI data were analyzed 
(see below for details). To optimize coil localization 
[42], we used the fMRI data from the first scanning ses-
sion to individually determine the coordinates of either 
the vertex (sham) or the task-related peak-voxel of the 
“switch  >  repeat” contrast within the left dorsal PFC 

(verum). This coordinate was then projected onto the 
individually acquired T1-weighted scan and used on the 
third occasion (with an interval of no more than 4 weeks 
between the second and third occasion) by applying the 
ASA4.1 neuro-navigation software (ANT Neuro, The 
Netherlands) to stimulate the individually determined 
location.

Stimulation procedure
First, we localized the hand area of the left primary 
motor cortex using a hand-held figure-of-eight TMS 
coil (Medtronic MagOption), gradually decreasing the 
intensity of the individual pulses until a muscle twitch 

Table 6  Session and  group-by-session interaction effects in  task-related functional connectivity for  the contrast 
shift > repeat

Effects are depicted at p = .001 (uncorrected) threshold with an extent threshold of k > 5.

Area BA L/R t value Cluster size Peak coordinates (MNI)

X Y Z

Session 1: Sham > Verum

No significant results to display

Session 1: Verum > Sham

No significant results to display

Sham: Session 1 > Session 2

No significant results to display

Sham: Session 2 > Session 1

No significant results to display

Verum: Session 1 > Session 2

No significant results to display

Verum: Session 2 > Session 1

No significant results to display

Sham > Verum, Session 1 > Session 2

No significant results to display

Verum > Sham, Session 1 > Session 2

Precentral gyrus 43 L 5.02 59 −57 −10 22

30 L 4.75 −48 −7 19

Insula 13 L 4.01 9 −39 −34 19

Table 7  Whole brain negative correlations between task-related functional connectivity of the left dorsal prefrontal cor-
tex and the number of errors on set-shift trials per group after rTMS stimulation

Effects are depicted at p = .001 (uncorrected) threshold with an extent threshold of k > 5.

Area BA L/R t value Cluster size Peak coordinates (MNI)

X Y Z

Session 2: Verum

No significant results to display

Session 2: Sham

Middle temporal gyrus 21 R 5.14 30 66 −37 1

Inferior frontal gyrus 47 R 4.27 6 48 26 −5

Superior temporal gyrus 41 R 4.14 7 51 −31 7

Insular cortex 13 R 4.02 6 45 8 −5
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in the right hand was only visually detectable in 5 out of 
10 trials. Since longer stimulation at a higher threshold 
is associated with increased efficacy [43, 44], all partici-
pants received 20 min of rTMS at 1 Hz, 110% of the indi-
vidual motor threshold (1,200  pulses per participant) at 
either the left dorsal PFC (verum condition) or the vertex 
(sham condition) in a room adjacent to the MRI scanner. 
The median time interval between the end of the stimula-
tion and the beginning of the set-shifting task in the MRI 
scanner was 5:56 min for the sham and 5:19 min for the 
verum group (no significant difference).

Set‑shifting task
In our in-house developed set-shift task, programmed 
in E-Prime (version 2.0) and available on request to the 
authors, an arrow appeared for maximally 4,000  ms 
either on the left or on the right side of a fixation cross 
in the centre of the screen, pointing in a downward or 
an upward direction, leading to four possible response 
types. The participant had to respond to the stimulus fea-
ture (location/direction) that was relevant at the moment 
of presentation. For instance, if the arrow pointed down-
wards on the left side of the fixation cross, while location 
was the correct classification rule, the accurate response 
was left. A coloured (green =  correct; red =  incorrect) 
feedback screen with a fixed duration of 2,000 ms imme-
diately followed a button press. The relevant stimulus 
feature did not change for four to seven trials (to pre-
vent anticipation) until a red screen followed a correct 
response, signalling a set-shift. This procedure continued 
until 40 correct set-shift trials were acquired. The inter-
stimulus interval (ISI) between the feedback and stimulus 
presentation was jittered between 250 and 1,000 ms for 
anti-aliasing purposes. All behavioural responses were 
recorded using an MRI compatible response-box (Cam-
bridge Research Systems Ltd., UK).

Depending on the version of the task, the arrow was 
either located above or below the fixation cross (version 
1), or on the left and right side (version 2), and it pointed 
in a left/right or upward/downward direction, respec-
tively. The order of the versions a participant would 
receive during the first and second session was counter-
balanced between both groups. This was done to mini-
mise learning/carry-over effects. Last, we acquainted the 
participant with the paradigm by practising it extensively 
prior to the actual recording to exclude learning effects 
(Figure 4).

Image acquisition
Imaging was performed at the VUmc using a GE Signa 
HDxt 3-T MRI scanner (General Electric, Milwau-
kee). Whole-brain functional images were acquired 
with a gradient echo-planar imaging (EPI) sequence 

(TR =  2,100  ms; TE =  30  ms; 64 ×  64 matrix; field of 
view = 24 cm; flip angle = 80°) with 40 ascending slices 
per volume (3.75  ×  3.75  mm in-plane resolution; slice 
thickness =  2.8  mm; inter-slice gap =  0.2  mm). Struc-
tural scanning included a sagittal three-dimensional 
gradient-echo T1-weighted sequence (256 × 256 matrix; 
voxel size = 1 × 0.977 × 0.977 mm; 172 sections).

Behavioral data
Each behavioural response was classified into the cat-
egories (1) “correct repeat” if no set-shift was necessary 
and the stimulus was correctly categorized, (2) “success-
ful shift” if the preceding feedback signaled a set-shift, 
and the response was correct, (3) “failed shift” if the pre-
ceding feedback signaled a set-shift, but it was not per-
formed, (4) “delayed shift” if a correct shift followed a 
“failed shift”, (5) “failed repeat” if the participant shifted 
to the other classification rule without a set-shift signal, 
(6) “no shift/no repeat” when shifting back to the correct 
classification rule after a “failed repeat”.

We computed the percentage of failed shift trials per 
session per participant by dividing the absolute number 
of failed shift trials by the absolute total number of tri-
als, and multiplying it by 100. A similar procedure was 
applied for the failed repeat trials. Both measures were 
used to assess accuracy. We calculated switch costs 
(=mean reaction time (RT) successful shift − mean RT 
successful repeat) to assess the cognitive effort to per-
form a set-shift [2], although we did not a priori expect 
the groups to differ on this measure since switch costs are 
most sensitive to rule-based and not feedback-based par-
adigms. The individually determined average behavioural 
scores were used in a mixed-model repeated measures 
design with session (session one/session two) as within-
subject factor and group (sham/verum) as between-sub-
ject factor in SPSS 20 (SPSS, Chicago, IL, USA). Post-hoc 
independent samples t tests were used to compare the 
test scores between the groups, and the Mann–Whitney 
U test in case of non-parametric distribution.

Image processing and analysis
In SPM8, the EPI scans were first slice-time corrected, 
realigned to the first image, and unwarped using a least 
squares approach and a six parameter (rigid body) spa-
tial transformation to correct for motion. They were then 
warped to the Montreal Neurological Institute (MNI) 
T1-template, employing the individual T1-weighted 
image for estimation. Lastly, the images were smoothed 
with an eight mm Gaussian kernel.

Our subsequently constructed first level general lin-
ear model (GLM) event design matrix consisted of two 
regressors of interest, (1) “successful repeat” (consist-
ing of correct repeat trials) and, (2) “successful shift” 
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(consisting of correct set-shift trials). Both regressors 
were modelled at the moment of feedback with a fixed 
duration of 2,000 ms. All other trials, and the six move-
ment parameters that were generated during the rea-
lignment were included as regressors of no-interest. 
Our contrast of interest was “successful shift  >  success-
ful repeat” (“shift  >  repeat”). In addition, we computed 
first level models to assess between session differences 
per participant. These models were a combination of 
the first level models of session one and session two and 
contained the same regressors as previously described. 
The contrast of interest was “session one >  session two, 
shift > repeat”.

Contrast images derived from the first level analyses 
were used at second level to investigate (1) within-group, 
between-session differences employing paired t tests (2) 
between group differences per session employing inde-
pendent t tests and (3) group differences in between 

session differences employing independent t tests. Brain 
regions were identified using the WFU-Pick Atlas [45]. 
Whole-brain statistical maps were thresholded at p < .05 
corrected for family-wise errors (FWE) in the main 
effects with an extent-threshold of k > 10, and at p < .001 
uncorrected, with a voxel extent-threshold of k > 5, after 
masking inclusively for the main effects for the group 
interaction effects to be sensitive to small, yet meaningful 
differences.

Regions of interest
We defined 5 mm spherical regions-of-interest (ROIs) at 
the rTMS stimulation location for the verum group, and at 
the location of the peak-voxel in the left dorsal PFC in the 
sham group that would have been the locus of stimulation 
if they had been placed in the verum group, using Mars-
Bar (http://marsbar.sourceforge.net) (see Figure  5a, b).  
Each subject-specific ROI was subsequently masked with 
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Response:

Down

Response:
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Response:
Right

Rule:
Direction

Rule:
Direction

Rule:
Location

Shift
Rule: 

Location

Repeat
Rule: 

Direction

Repeat
Rule: 

Direction

Repeat
Rule: 

Location

2000 ms

0 - 4000 ms

2000 ms

0 - 4000 ms

2000 ms

Figure 4  The set-shift paradigm. Stimuli consisted of arrows that could appear in two different locations (left/right) and point in two different direc-
tions (up/down). The stimulus was presented on the screen for a maximum of 4,000 ms and was terminated upon a button press. Each response 
was immediately followed by a green (correct response) or red feedback (incorrect response) screen for 2,000 ms. The correct response depended 
on the relevant feature of the stimulus (i.e. location/direction). A red feedback screen following a correct response signaled a rule shift.

http://marsbar.sourceforge.net
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the first-level activity mask to exclude task-unrelated 
voxels. Then, we extracted the average parameter esti-
mates of the whole ROI, using the task effect contrast, 
per session, per participant. Lastly, we compared the 
average parameter estimates in a mixed-model repeated 
measures design with session (session one/session two) 
as within-subject factor and group (sham/verum) as 
between-subject factor.

Functional connectivity: gPPI
We assessed task-related functional connectivity of the 
stimulated areas in the verum group and of the selected 
ROIs in the left PFC in the sham group using a generalized 
form of context-dependent psychophysiological interac-
tion (gPPI) [46, 47]. A gPPI analysis statistically tests in a 
whole-brain voxel-wise manner whether areas outside the 
seed region are functionally connected to the seed region 
during the task [47]. We used the individually determined 
ROIs described in the previous paragraph as seed regions.

At first-level, our contrast of interest was 
“shift > repeat”, now using the PPI terms that were con-
voluted with the seed region time-course, and leaving the 
psychological variable (task conditions) and movement 
parameters as covariates of no interest. All further con-
structed contrasts-of-interest were identical to the activ-
ity-based analyses described previously.

We also performed a whole-brain analysis of the nega-
tive relationship (using a regression analysis) between 
task-related functional connectivity of the left PFC dur-
ing the second session and the percentage of failed 
shift trials, per group separately, to assess the potential 

influence of changes in functional connectivity on behav-
ioural performance.

Whole-brain statistical maps were thresholded at 
p  <  .001 uncorrected, with a voxel extent-threshold of 
k  >  10 for the main effects, and a voxel extent-thresh-
old of k > 5 for the interactions and regression. We also 
masked inclusively for the main effect of group or session 
for the interaction effects, to be sensitive to subtle, but 
relevant, task-related effects.
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