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Ability of naringenin, a bioflavonoid, to activate
M-type potassium current in motor neuron-like
cells and to increase BKc,-channel activity in
HEK293T cells transfected with a-hSlo subunit
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Abstract

in vivo.

Background: Naringenin (NGEN) is a citrus bioflavonoid known to have beneficial health properties; however, the
ionic mechanism of its actions remains largely unclear. In this study, we attempted to evaluate the possible effects
of NGEN on K" currents in NSC-34 neuronal cells and in HEK293T cells expressing a-hSlo.

Results: NGEN increased M-type K" current (g in @ concentration-dependent manner with an ECsq value of

9.8 UM in NSC-34 cells. NGEN shifted the activation curve of /) conductance to the more negative potentials. In
cell-attached recordings, NGEN or flupirtine enhanced the activity of M-type K™ (Ky) channels with no changes in
single-channel amplitude. NGEN (10 uM) had minimal effect on erg-mediated K™ currents. Under cell-attached
voltage-clamp recordings, NGEN decreased the frequency of spontaneous action currents and further application
of linopirdine can reverse NGEN-induced inhibition of firing. In HEK293T cells expressing a-hSlo, this compound
increased the amplitude of Ca’*-activated K* current (lkcay). Under inside-out recordings, NGEN applied to the
intracellular side of the detached patch enhanced the activity of large-conductance Ca®*-activated K* (BKc.)
channels. Moreover, from the study of a modeled neuron, burst firing of simulated action potentials (APs) was reduced
in the presence of the increased conductances of both Ky, and K, channels. Fast-slow analysis of AP bursting from this
model also revealed that as the conductances of both Ky, and BKc, channels were increased by two-fold, the
voltage nullcline was shifted in an upward direction accompanied by the compression of burst trajectory.

Conclusions: The present results demonstrate that activation of both Ky, and BKc, channels caused by NGEN
might combine to influence neuronal activity if similar channels were functionally co-expressed in central neurons

Keywords: Naringenin, M-type K™ channel, Large-conductance Ca*"-activated K" channel, Motor neuron

Background

Naringenin (NGEN, Figure 1) is a major dietary flavo-
none, a type of flavonoid which is considered to have
bioactive effects on human health. Several studies have
indeed reported that it and other structurally related
compounds could produce anxiolytic and antinocicep-
tive actions [1-6]. An earlier study also demonstrated its
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ability to exert anti-inflammatory properties in macro-
phages and ex vivo human whole-blood models [7]. How-
ever, the ionic mechanism of their actions at the cellular
level is largely unclear.

The KCNQ2, KCNQ3, and KCNQ5 genes are known
to encode the core subunits of Ky7.2, Ky7.3 and K7.5
channels. The increased activity of Ky7.2, 7.3 and 7.5
channels is known to generate the M-type K" current
(Ixany) which is a slowly activating and deactivating
current suppressed by stimulation of muscarinic receptors
[8]. Mutations of the KCNQ2 gene are notably involved in
peripheral nerve hyperexcitability, a syndrome which is
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Figure 1 Chemical structure of NGEN (naringenin, 4',5,7-
trihydroxyflavanone).

characterized by spontaneous and continuous muscle
overactivity [9,10]. Most of Ixny in neurons are made
by heterologously expressed Ky7.2/7.3 channels [11,12].
Targeting Ky7/Ky channels is recognized to be valuable
as an adjunctive regimen for the treatment of many
neurological disorders [8,13,14].

The large-conductance Ca**-activated K* channels
(maxi-K channels, Kc,1.1, KCNMA1, Slol) have the lar-
gest single-channel conductance of all K" selective chan-
nels. They can be synergistically activated by membrane
depolarization, elevation of intracellular Ca®*, or both.
Native BKc, channels from mammalian tissues are
composed of two structurally distinct subunits, a and £,
arranged in a 1:1 stoichiometry. These channels are a
physiologically and structurally diverse group of K* chan-
nels that are essential for neuronal excitability by partici-
pating in the repolarization and after-hyperpolarization of
action potentials [15,16].

NGEN has been previously shown to bind to GABA,
receptors and then to exert anxiolytic actions [1,2]. Earl-
ier studies have demonstrated the ability of this agent to
block HERG-encoded currents [17]. Another work also
reported that it could dilate endothelium-denuded aortic
ring by the activation of BKc, channels in vascular myo-
cytes [18]. Naringin, another structurally similar compound,
was recently reported to activate inwardly rectifying K*
channels [19]. Green tea flavonoids, such as epigallocate-
chin and epicatechin, were shown to reduce the activity of
ATP-sensitive K" channels [20]. Quercetin, another natural
flavonoid, was described to alter the amplitude of L-type
Ca*" current in pituitary and motor neuron-like cells [21].
A recent report also showed the ability of NGEN to inhibit
Cl” secretion in isolated colonic epithelia [22]. Whether
NGEN and its structurally related compounds can produce
any effects on other types of ion channels including Ky,
channels remains incompletely understood.

The NSC-34 neuronal cell is a hybridoma cell line
derived from the fusion of neuroblastoma cells with
mice spinal cord cells. These cells have attracted grow-
ing interest as a suitable model for evaluation of the
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effects of potential neuroprotective compounds against
different insults including excitotoxins, mitochondrial
toxins and oxidants [23,24]. A recent study has reported
the presence of Na'-activated K channels functionally
expressed in these cells [25]. However, the biophysical or
pharmacological properties in NSC-34 neuronal cells are
incompletely characterized.

In the current study, we provide the first evidence that
NGEN can interact with Ky, channels to increase the amp-
litude of macroscopic Ixa in motor neuron-like NSC-34
cells. In HEK293T cells transfected with a-4Slo subunit,
NGEN was also noted to increase the activity of BK¢, chan-
nels. Therefore, similar to BMS-204352-induced change in
BKc, and neuronal KCNQ channels [13,26], both stimula-
tion of Iy and Iy, caused by NGEN can be a potential
mechanisms through which it influences neuronal activity
in central neurons, although these two compounds are
structurally distinguishable. Furthermore, numerical simu-
lation of AP bursting generated from a modeled pyramidal
neurons [27] clearly showed that as the conductances of
gm and gixc, channels were elevated by two-fold to
mimic the stimulatory actions of NGEN, the intraburst
firing of APs was reduced accompanied by the increased
after-hyperpolarization.

Results

Effect of NGEN on I, in NSC-34 cells

In these experiments, NSC-34 cells were bathed in
Ca**-free Tyrode’s solution. To ensure that the activity
of K¢, or Ky, channels was not contaminated, iberio-
toxin (200 nM), apamin (200 nM) and tetrodotoxin
(1 uM) were added to the bath medium. Iberiotoxin and
apamin are, respectively, the blockers of BK channels
and small-conductance Ca**-activated K* channels,
while tetrotodotxin is a potent blocker of voltage-gated
Na® current. Under whole-cell configuration, the I
was elicited from a holding potential of -20 mV to dif-
ferent potentials which ranged from -50 to +10 mV with
10-mV increments at a rate of 0.05 Hz. The voltage
protocol used was previously described [28]. As shown
in Figure 2, addition of NGEN at a concentration of
10 uM increased the amplitude of Ik throughout the
entire voltage-clamp steps examined. For example, at the
level of -10 mV, cell exposure to NGEN (10 pM) signifi-
cantly elevated I amplitude from 52.9+8 to 79.2+9
pA (n=11). After washout of NGEN, Ik amplitude
returned to 57 + 8 pA (n = 7). Similarly, flupirtine (10 pM),
an activator of I [8,14], also increased the i) ampli-
tude found in NSC-34 cells. A further application of
linopirdine (10 uM) reversed Ik amplitude to 55.6 + 6
pA observed at the same level of holding potential. Lino-
pirdine is a blocker of I Figure 2B illustrates averaged
I-V relationships of I obtained in the control and
during exposure to NGEN. Specifically, cell exposure to



Hsu et al. BMC Neuroscience (2014)15:135 Page 3 of 16

:E 150+ control 150+ NGEN
o
~— \ “)\} \\
M i o o
Q100 MWM’W i MWWMM\' o 100 w&
Uk » St
g /M“*"Mwm o wM‘WM’"WW‘wV\ ””“M'W'”‘ ! e A
Q501 50{  Watmh i
E mmnn W \m\ VW""‘*‘W\W WW\’ n“
c 0 WY s 0-
)
=
3 Ho——— ,-50 ———— ;
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (msec) Time (msec)
B
120 4
=, /% 7%
@ 80+ o
=
S
5 40
= @ §
E | o=
S /
O -
-60 -40 -20 (0] 20
Membrane potential (mV)
C
1.2+
0.8 -
>
©
e
D
—
O 0.4
0.0
-80 -60 -40 -20 (0] 20
Membrane potential (mV)
Figure 2 Effects of NGEN on Iy, recorded from motor neuron-like NSC-34 cells. In (A), superimposed current traces obtained in the
absence (left) and presence (right) of 10 uM NGEN. In these experiments, cells were bathed ca*t -Tyrode’s solution which contained 200 nM
iberiotoxin, 200 NM apamin and 1 uM tetrodotoxin. The lg was elicited from -20 mV to different potentials which ranged from -50 to +10 mV
with 10-mV increments. (B) Effect of NGEN on the averaged I-V relations of I in NSC-34 cells (mean + SEM; n=9-13 for each point). m: control;
o: 10 uM NGEN. Current amplitude was measured at end of each voltage pulse. (C) Voltage dependence of /xyy conductance in the absence
(m) and presence (0) of 10 uM NGEN (mean = SEM; n=8-12 for each point). Note that there is a leftward shift in the activation curve of /)
conductance during cell exposure to NGEN, although the slope factor remains unchanged.

NGEN significantly increased the slope of the linear fit of  to 2.11 +£0.05 nS (n=9). The data clearly indicate that as
Ik amplitudes to the voltages between -30 and -10 mV,  NSC-34 cells are exposed to NGEN, the -V relationship
namely, whole-cell conductance of Ixg), from 1.45+0.03  of I in NSC-34 cells can be modified.
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Effect of NGEN on the voltage dependence of Ik,
activation in NSC-34 cells

Figure 2C shows the activation curve of I obtained with
or without addition of NGEN (10 uM). The plot of relative
Ik conductance as a function of membrane potential
was constructed and fitted with a Boltzmann function
as described under Methods. In controls, Vi, =-26.8 +
0.7 mV, g=1.86+0.07 e (n =9), whereas in the presence of
NGEN (10 pM), V1 =-44.3 £ 1.1 mV and g =2.01 £ 0.06 e
(n=7). The data showed that the activation curve of Ik
was shifted along the voltage axis to more negative poten-
tials by approximately 18 mV, as NSC-34 cells were ex-
posed to NGEN. However, no significant change in the
gating charge was clearly demonstrated in the presence of
NGEN. The data thus indicate that in NSC-34 cells, NGEN
is capable of shifting the activation curve of I to more
negative potentials with no discernible change in the ap-
parent gating charge.

The relationship between the NGEN concentration
and the percentage increase of Ixay is illustrated in
Figure 3. To evoked Ik obtained in controls and dur-
ing exposure to different concentrations (0.1-300 uM) of
NGN, each cell was hyperpolarized from -20 to -50 mV.
The amplitude of i measured at the end of hyperpo-
larizing pulse was compared with those obtained after
subsequent application of linopirdine (30 uM). Addition
of NGEN (0.1-300 M) was noted to increase the ampli-
tude of linopirdine-sensitive current in a concentration-
dependent manner. The half-maximal concentration
(ie., ECs0) required for stimulatory effect of NGEN on I
was calculated to be 9.8 + 0.4 uM, and at a concentration
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of 300 pM, it increased almost all of the i amplitude
in these cells.

Effects of various related compounds on Iy, in NSC-34
cells

Earlier reports have shown the ability of NGEN or its
structurally similar compounds to alter K*-channel activ-
ity [18,19]. Effects of NGEN, flupirtine, NGEN plus lino-
pirdine and NGEN plus blocker of Iyca) on Ixnr were
further examined and compared. As shown in Figure 4,
similar to NGEN, flupirtine at a concentration of 10 uM
was effective in increasing the amplitude of Ix). Flupir-
tine is recognized to be a specific activator of neuronal
KCNQ channels [14]. However, neither iberiotoxin nor
apamin produced any effects on NGEN-stimulated i),
although subsequent application of linopirdine was able to
reverse the increased I caused by either NGEN or flu-
pirtine. Therefore, NGEN-stimulated I is subject to in-
hibition by linopirdine, but not linked to the activity of
K¢, channels probably expressed in NSC-34 cells,

Effect of NGEN on Ky, channels in NSC-34 neuronal cells

We next sought to investigate whether NGEN can act by
influencing the activity of Ky; channels for changes in
whole-cell Ixv) amplitude in these cells. In these experi-
ments, cell-attached recordings were conducted in cells
bathed in Ca®*-free Tyrode’s solution. To ensure that the
activity of K¢, or Ky, channels would not be contami-
nated, iberiotoxin (200 nM), apamin (200 nM) and tetro-
dotoxin (1 pM) were added to the bathing solution. The
recording pipette was filled with K"-containing solution
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Figure 3 Concentration-dependent stimulation of Ik, by NGEN in NSC-34 cells. In these experiments, each cell was hyperpolarized from
-20 to -50 mV with a duration of 2 sec. (A) Original current traces obtained in the control and during exposure to NGEN. a: control; b: 3 uM NGEN;
c: 10 uM NGEN; d: 30 uM NGEN. The upper part indicates the voltage protocol used. (B) Concentration-response relationship for NGEN-induced
increase of Iy (i.e. linopirdine-sensitive current) measured at the end of hyperpolarizing pulses (mean £ SEM; n=9-12 for each point). Smooth
blue line represents the best fit to the Hill equation as described in Methods.
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Figure 4 Effects of NGEN and other K* current blockers on the
amplitude of I, in NSC-34 cells. In these experiments, cells were
bathed in Ca®*-free Tyrode's solution which contained 200 nM
iberiotoxin, 200 NM apamin and 1 uM tetrodotoxin, and each cell
was hyperpolarized from -20 to -50 mV with a duration of 2 sec.
Current amplitude was measured at the end of voltage pulse.

Each bar represents the mean + SEM (n = 7-13). Flu: flupirtine; Iber:
iberiotoxin; Aps: apamin; Lino: linopirdine. “Significantly different
from control. “‘Significantly different fror NGEN (10 uM) alone group.
Notably, further application of linopirdine reversed NGEN-stimulated gy,
while neither iberiotoxin nor apamin produced any effects on it.

and the cell attached to the pipette was held at 0 mV
relative to the bath. As the cell was in a physiological ex-
ternal solution, the resting potential of the cells was
about -71 mV. The pipette solution had a high K* con-
centration, which is the same as that of the cytoplasm.
Therefore, a K" channel in the membrane patch would
be expected to have a reversal potential of 0 mV. The
membrane patch can be depolarized by applying nega-
tive command potentials to 0 mV. Figure 5A shows the
current tracings of single-channel recordings obtained
with or without addition of NGEN (10 uM). When NGEN
was added to the bath, channel activity was greatly raised.
The probability of channel openings was significantly ele-
vated from 0.052 +0.024 to 1.45+0.058 (n=9) in the
presence of 10 pM NGEN (Figure 5B). Similarly, flupirtine
(10 uM) was effective in increasing channel activity. A fur-
ther application of 2 mM CaCl, or linopirdine (10 uM) to
the bath could effectively reverse NGEN-stimulated activ-
ity of Ky channels. However, single-channel amplitude be-
tween the absence and presence of NGEN or flupirtine
did not differ significantly.

Inability of NGEN to block lxrg) in NSC-34 neuronal cells

Earlier work has demonstrated the ability of NGEN to
block cardiac HERG currents [17]. We further investi-
gated the possible effects of NGEN on [i(g found in
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NSC-34 cells. As depicted in Figure 6, addition of NGEN
at a concentration of 10 uM did not cause any effect on
peak (g amplitude elicited throughout the entire
voltage-clamp steps examined. The peak amplitude of
Ix(erg) elicited by membrane hyperpolarizations was not
noted to differ significantly between the absence and
presence of 10 uM NGEN. However, addition of azimi-
lide, an blocker of I(erg) [29], reduced Ii(erg) amplitude
by 43%. The results presented here are compatible with
previous observations showing that the ICso value for
NGEN-induced block of HERG channels expressed in
Xenopus oocytes is about 100 pM [17], which is much
greater than that used to stimulate /x(r) described here.

Effects of NGEN on spontaneous action currents recorded
from NSC-34 cells

It was also examined whether NGEN can produce any
changes in spontaneous action currents emerging in these
cells. In these experiments, cells were bathed in normal
Tyrode's solution containing 1.8 mM CaCl,. Cell-attached
voltage-clamp recordings were performed [30,31] and
patch pipettes were filled with a K*-containing solution.
The potential across the patch was set at the level of the
resting membrane potential of the cells (around -70 mV).
As illustrated in Figure 7, addition of NGEN caused a sig-
nificant reduction in the firing of spontaneous action cur-
rents. The frequency of action currents in the presence of
10 uM NGEN (0.54+0.03 Hz, n=7) was significantly
smaller than that in control (1.21 + 0.06 Hz, n = 8). More-
over, a subsequent application of linopirdine (10 uM) re-
versed the firing frequency to 1.02+0.05 Hz (n=6),
although iberiotoxin (200 nM) had minimal effects on
NGEN-induced decrease of firing frequency. In light of
these data, we assumed that NGEN-induced reduction of
firing frequency is primarily linked to the simulation of
Ky channels and unlikely to be mediated through the acti-
vation of BK, channels.

Stimulatory effect of NGEN on I, in HEK293T cells
transfected with a-hSlo

Previous work has demonstrated the ability of NGEN to
stimulate the activity of BK¢, channels in vascular smooth
myocytes [18]. We also tested the hypothesis that this
compound exerts any effects on I, in HEK293T cells
expressing a-hSlo. Under our experimental conditions
[32], transfection with «-4Slo into HEK293T cells can re-
sult in the appearance of BKc, channels, thereby elevating
the amplitude of macroscopic Iic,). In whole-cell config-
uration, as NGEN was applied to the bath, the /i,y amp-
litude was significantly increased (Figure 8). For example,
NGEN at a concentration of 30 pM increased Jic,) ampli-
tude at +50 mV from 403 + 12 to 917 £ 34 pA (n=11).
Subsequent application of verruculogen (1 pM) or iberio-
toxin (200 nM) was noted to reverse NGEN-stimulated
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Figure 5 Stimulatory effect of NGEN on the activity of Ky, channels recorded from NSC-34 cells. In (A), cells were bathed in Ca’*free
Tyrode's solution which contained iberiotoxin (200 nM), apamin (200 nM) and tetrodotoxin (1 uM). Cell-attached configuration was made as the
cell attached was held at 0 mV relative to the bath. Channel activity was obtained in the control (left) and after addition of NGEN (10 pM) to
the bath. Portion of tracing in the upper part of (A) is amplified in the lower part. Channel openings give a downward deflection in current.
(B) Summary of the data showing effects of NGEN and flupirtine (Flu) on Ky-channel activity in NSC-34 cells (mean + SEM; n = 9-12 for each bar).
“Significantly different from control.

Ix(ca) significantly (Figure 8B); however, neither apamin
(200 nM) nor linopirdine (10 uM) had any effects on it.

Stimulatory effect of NGEN on the activity of BKc,
channels in HEK293T cells expressing a-hSlo
Verruculogen and iberiotoxin, known inhibitors of BKc,
channels [33], could clearly reverse NGEN-stimulated
Ix(ca) in these cells. The increased macroscopic Ik ca)
caused by NGEN could be due to either the elevated
open probability, an increase in the number of active
channels, or both. The effect of NGEN on BK,-channel

activity was further investigated (Figure 9). In this set of
experiments, single-channel recordings with an inside-
out configuration were performed in symmetrical K* so-
lution (145 mM). Bath medium contained 0.1 uM Ca**
and the potential was held at +60 mV. When NGEN
(30 uM) was applied to the intracellular leaflet of the de-
tached patch, channel activity was significantly raised to
0.211 £ 0.032 from a control of 0.021 +0.005 (n=9). A
further application of verruculogen (1 uM) decreased the
probability of channel openings to 0.053 £ 0.009 (n=38),
although linopirdine (10 puM) applied to the bath had
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minimal effects on NGEN-stimulated channel activity.
The single-channel conductance of BKc, channels be-
tween the absence and presence of 30 pM NGEN was not
noted to differ significantly (178 +6 pS [control] versus
180 + 6 pS [NGEN], n =7). Therefore, in agreement with
previous observations made in vascular myocytes [18], the
NGEN-induced increase of Ik, amplitude in HEK293T
cells which were transfected with a-/4Slo, tended to be as-
sociated with its increase in the probability of channel
openings, rather than changes in the number of functional
active channels. NGEN can thus interact with BK, chan-
nels to increase the amplitude of Iic,) in these cells, even
in the absence of BKc,-channel -subunits.

Simulated firing and bursting pattern of APs in central
modeled neuron with varying gy or gkca

We further explored how the dynamics of bursting firing
elicited by continuous current injection can be altered by
increasing the values of gy; and gy, to mimic the stimula-
tory of NGEN on I and I, described above. For
studying this, a brief depolarizing current with 0.004 mA
was applied to the modeled central neuron (e.g., CA3 pyr-
amidal neuron) with the parameter values illustrated in
Table 1, in an attempt to generate burst firing of neuronal
APs. The descriptions for this modeled neuron were de-
tailed under Methods. Initially, the gy value was arbitrar-
ily elevated from 0.02 to 0.04 mS/cm® Subsequently, to
mimic the condition in which NGEN (10 pM) was added,

the values of gy and gic, was arbitrarily raised by two-
fold. As illustrated in Figure 10, by elevating g\; value
alone, we are able to show an increase in the intra-burst
interval in combination with the increased ). As both
values of gy and gy, were elevated, intra-burst rate was
reduced, along with the increase of after-hyperpolarizaton
from -81 to -85 mV (Figure 10Ca). It also needs to be
noted that in Figure 10Cb, the Ik amplitude numeric-
ally generated was increased only by 1.5-fold, although gy
value was elevated by 2-fold as compared with the results
in Figure 10Bb. Therefore, it is possible from these simula-
tion results that when both gy; and gic, are at work sim-
ultaneously, the outcome may not simply be due to the
summation of individual element.

Fast-slow analysis of AP bursting in model neuron

Finally, in order to develop a better quantitative under-
standing of Ky; and K¢, channels, we further performed
fast-slow analysis in a reduced comparable model. Such
a maneuver can be allowed for separation of the vari-
ables into two subsystems, i.e., fast (fully responsive
within the timescale of a spike) and slow (changes on
the timescale of the whole burst) [27,34]. One can
analyze how the bursting from this modeled neuron is
numerically generated owing to a delicate interaction of
these two variables. In other words, one is a slow auto-
catalytic variable n (i.e., activation gate for Cay3.1 T-type
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(See figure on previous page.)

Figure 7 Effects of NGEN and flupirtine on spontaneous action currents recorded from NSC-34 neuronal cells. In (A), current traces were
obtained in the absence (a) and presence (b) of 10 uM NGEN. The lower part shown at (a) and (b) indicates an expanded record from dashed
box. Notably, the traces showing downward deflections indicate action currents. (B) Summary of the data showing effects of NGEN, flupirtine
(Flu), NGEN plus linopirdine (Lino) on the frequency of action currents in NSC-34 cells. Each point indicates the mean + SEM (n = 7-10).

“Significantly different from control.

Ca®* channel) and the other is a slow negative feedback
variable o (i.e., activation gate for K¢, channel).

In this analysis, we treated slow variables n and o as
the parameters to study the fast subsystem and subse-
quently to determine the regions of spiking and resting
states, as the different values of gy and gic, are chosen.
As shown in Figure 10, the two-parameter phase plot
clearly showed the ability of the burst trajectory to be
projected onto the slow variables (i.e., n-o plane). The
solid and dashed lines shown in Figure 11, correspond
to the voltage nullcline (dV/dt = 0) for the fast system at
the indicated values of n and o, where the saddle node
bifurcation occurs. It becomes clear from this plot that
an interaction of n and o was able to generate slow os-
cillations that were allowed to move the fast subsystem
in and out of the repetitive spiking regime. The arrows
shown in Figure 10 indicate the direction of the trajectory
movement. The region above the nullcline corresponds to
a region of repetitive firing, while the region below the
nullcline is where the system remains silent. The arbitrary
increase of gy value from 0.02 to 0.04 mS/cm* was noted
to shift voltage nullcline in an upward direction with min-
imal changes in burst trajectory on n-o plane. However, of

interest, when the values of gy; and gic, were simultan-
eously elevated by two-fold to mimic the stimulatory ac-
tions of NGEN (10 pM) described above, the nullcline was
further shifted in an upward direction accompanied by the
compression of burst trajectory in size on n-o plane. Such
upward shift in the voltage nullcline indicates a reduction
of repetitive spiking regime. The results of these changes
are therefore compatible with our experimental and com-
putational data showing that the increased values of gy
and gyc, caused by NGEN result in a reduction of intra-
burst firing accompanied by the prolongation of interburst
period and the increase of the afterhyperpolarization of
APs, if similar findings are observed in central neurons
in vivo.

Discussion

In this study, we provide the direct evidence that NGEN
has a stimulatory action on Ik in NSC motor neuron-
like cells. The half-maximal concentration (i.e., ECsy) of
NGEN required for stimulation of I was about 9.8 uM,
which is much smaller than that reported for the inhib-
ition of HERG channels [17]. Because of their lipophilicity,
NGEN was also reported to transverse the blood-brain
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Figure 8 Effect of NGEN on whole-cell Ix(c,) in a-hSlo-expressing HEK293T cells. In these experiments, cells were bathed in normal Tyrode's
solution containing 1.8 mM CaCl,. (A) Current traces in response to membrane depolarization from 0 to +50 mV. The upper part indicates the
voltage protocol used. a: control; b: 3 uM NGEN; ¢: 10 uM NGEN; and d: 30 uM NGEN. (B) Summary of the data showing effects of NGEN, NGEN
plus verruculogen (Verr; 1 uM) and NGEN plus iberiotoxin (Iber; 200 nM) on fca) amplitude in these cells (mean + SEM; n=10-13 for each bar).
“Significantly different from control. Significantly different from NGEN (30 M) alone group.
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Figure 9 Stimulatory effect of NGEN on BKc,-channel activity measured from a-hSlo-expressing HEK293T cells. (A) Original current traces
showing the activity of BKc, channels before (left) and after application (right) of 30 uM NGEN. Inside-out recordings were conducted with
symmetrical K" concentration (145 mM). The potential was constantly held at +60 mV, and bath medium contained 0.1 uM Ca’*. Channel
openings give an upward deflection in current. (B) Summary of the data showing effect of NGEN and NGEN plus verruculogen (Verr; 1 uM) on
the probability of BK-,-channel openings (mean + SEM; n=8-11 for each bar). Significantly different from control. " Significantly different from
NGEN (30 pM) alone group.

barrier and subsequently to penetrate into different brain
regions [35], although the brain concentrations of NGEN
vary based on local extracellular milieu in and around
membranes and synapses. The importance of K7
channels as regulators of neuronal excitability became
apparent, when mutated neuronal Ky7 channels were
demonstrated to cause benign familial neonatal convul-
sions [9]. It is thus anticipated that in motor neurons
like NSC-34 cells, the Ky7/Ky; channels (i.e., KCNQ2/

Q3 and/or KCNQ3/Q5 heteromultimers) are an import-
ant therapeutic target for the action of this agent or
other structurally similar compounds within the CNS.
Addition of NGEN could shift the activation curve of
Ixowy conductance to the hyperpolarized potential in this
study. Inability of NGEN to alter the gating charge of
Ky channels observed in NSC-34 cells allows us to sug-
gest that the stimulatory effect of this compound on Ky,
channels in NSC-34 cells is not mediated through a
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Table 1 Default parametric values used for the modeling
of hippocampal CA3 pyramidal neurons
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concentration used, the level of pre-existing membrane
potential, or both.

Symbol  Description Value The pharmacological and electrophysiological proper-
Cm Membrane capacitance (pF) 1 ties of Ky; channels observed in NSC-34 cells are similar
I Na* current conductance (S/cm?) 5 to those in other types of neurons described previously
gcat T-type Ca?* current conductance (S/cm?) 045 [8,11,36].‘ In cell-attached conﬁgurat‘lon, addition of NG.E.N
. , (10 uM) into the bath was noted to increase the probability

geat Ltype Ca™ current conductance (5/cm’) 00025 of channel openings with no discernible change in single-
9can N-type Ca”" current conductance (5/cm’) 00025 channel amplitude. The inability of NGEN to modify
IkoR Delayed rectifier K™ current conductance (S/cm?) 008 single-channel conductance indicates that the increased re-
g A-type K* current conductance (mS/cm?) 0.1 sponsiveness of the channel to this compound is not lo-
9 M-type K* current conductance (mS/cm?) 002 cated at the central ion-conducting pore of the channel.
Jkca Ca’*-activated K* current conductance (mS/cm?)  0.05 Similarly, ﬂupir.tine ata Concentrat‘io‘n qf 10 uM was cap-
o able of enhancing Ky;-channel activity in these cells. The

Grahp (Anfqtse/r;kxgerpolanzanon K current conductance 00018 stimulatory actions of NGEN and flupirtine on the activity
5 of Ky; channels were not additive in NSC-34 neuronal cells

ek Leak current conductance (ms/cm) 00Te7 (data not shown). Our results suggest that the two com-
lopo Applied current (mA) 0004 pounds exert their major effects on the same component
Vi Na* reversal potential (mV) 50 existing in Ky channels. Further work is also required to
Vi K* reversal potential (mV) -91 see whether this compound can interact with the Ky7/Ky
Vieak Reversal potential for leak current (mV) —65 (KCNQ2-7) channels to stimulate Ik in other types of

direct effect on the voltage sensor per se. The binding
site of NGEN is most likely to lie outside of the trans-
membrane field around the channel. Nevertheless, as the
neurons are exposed to NGEN, the effects of this com-
pound on Ik amplitude could rely upon the NGEN

central neurons.

Previous reports have demonstrated the ability of NGEN
to bind to GABA, receptors and to produce anxiolytic
actions [1,2]. A recent study also showed that NGEN
might inhibit CI” secretion in isolated colonic epithelia
[22]. In our study, macroscopic Ik was measured in the
recording pipette which was filled with a solution contain-
ing aspartic acid, rather than Cl- ions. Moreover, gabazine
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Figure 10 Burst firing of APs (upper parts) and the corresponding changes of Ik, and Ixca) (lower parts) in modeled hippocampal
neuron. The detailed formulations were described under Methods. The firing was generated with the values of gy and gxc, was set at 0.02 and
0.05 mS/cm? (Aa), 0.04 and 0.05 mS/cm? (Ba) and 0.04 and 0.1 mS/cm? (Ca), respectively. Ab, Bb, and Cb indicate the corresponding changes in
Iy (blue solid lines) and lkc, (red dashed lines), respectively. In (C), the values of gy and gkc, were arbitrarily elevated by two-fold to mimic the
stimulatory effects of NGEN (10 pM). Note that in this simulation, the amplitudes of /g are smaller than those of /kca).
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Figure 11 Fast-slow analysis of AP bursting generated from
modeled neuron. The phase plot of burst firing elicited by
continuous current injection shows the projection of the burst
trajectory onto n-o plane. n and o denote the activation gates of
Cay3.1 and Ke, channels, respectively. Arrows indicate the direction
of trajectory movement. The solid and dashed lines are the voltage
nullcline (i.e, dV/dt = 0) of the fast subsystem with n and o as
parameters. Below the nullcline is the silent region. Notably, as the
value of gy was increased from 0.02 to 0.04 mS/cm?, the nullcline
was shifted in an upward direction with minimal change in the
burst trajectory. When the values of gy, and gyc, were
simultaneously elevated by two-fold to mimic the effect of NGEG
(10 uM), the burst trajectory was clearly compressed in combination
with a further upward shift in the voltage nullcline.

\

(10 uM), a blocker of GABA, receptors, had minimal ef-
fects on NGEN-stimulated I in NSC-34 cells. It thus
seems unlikely that the observed increase of I caused
by NGEN is inherently associated with the increase of CI™
current induced by its binding to GABA 4 receptors.

An earlier work has demonstrated that green tea flavo-
noids such as epigallocatechin and epicatechin were
capable of reducing the activity of ATP-sensitive K*
channels [20]. Under our experimental condition, the re-
cording pipette used for measurements of whole-cell I
was filled with a solution which contained 3 mM ATP.
Moreover, NGEN-stimulated Ik observed in NSC-34
cells was not reversed by subsequent application of gliben-
clamide (30 pM), but by linopirdine (10 pM) (data not
shown). Therefore, in NSC-34 cells or in HEK293T cells
expressing a-4Slo, the elevation of K* currents induced by
NGEN is not necessarily related to any changes in ATP-
sensitive K™ channel conductance.

It is noteworthy that the observed increase in the
whole-cell Ixn by NGEN did not appear to match its
increase in Ky-channel activity. The reason for this dis-
crepancy is currently unclear. However, it is likely that
the NGEN effects are much dependent on some receptors
and/or intracellular second messenger systems which are
possibly washed out during our whole-cell recordings. It
remains to be further clarified whether any changes in
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receptors and/or transmembrane signal pathways are in-
volved in the NGEN effect on Ky, channels.

In the present study, under a cell-attached recording,
we found that addition of NGEN decreased the firing
frequency of spontaneous action currents in NSC-34 cells.
The reduction of firing frequency caused by NGEN in
these cells could be primarily explained by its activation of
Ky channels, because linopirdine can significantly reverse
NGEN-mediated inhibition of spontaneous action cur-
rents. It was also noted that when the recording pipette
was filled with iberiotoxin (200 nM) or apamin (200 nM),
NGEN-induced reduction in the firing of action currents
still existed (data not shown). Moreover, because Ii(erg)
was relatively not subject to block by NGEN at a concen-
tration of 10 uM, lack of stimulatory effect of NGEN on
the spontaneous firing of action currents could be demon-
strated in the presence of this compound.

Activation of BKc, channels induced by NGEN in vas-
cular myocytes reported previously [18] was noted to
share similar characteristics shown here in HEK293T
cells in which a-4Slo channels are functionally expressed.
Our results also suggest that NGEN may bind to a site lo-
cated in the cytoplasmic side of the a-subunit. In addition,
BMS-204352 and meclofenamic acid, known to be activa-
tors of BK, channels [13,37], was shown to activate Ky/7/
Ky channels [13]. Therefore, these two types of ion chan-
nels is most likely to share the unique motifs with which
some small compounds such as NGEN can interact.

Another notable issue is the subunit composition of
the BKc, channels. In this study, we used homomeric a-
hSlo channels and imply the consequences for neuronal
firing. However, in the central nervous system, o sub-
units are accompanied by accessory 4 proteins [38]. 4
subunits were described to change channel pharmacology
and current phenotype dramatically [38,39], and even pro-
duce profound effect on the neuronal firing [40]. There-
fore, it is important to investigate to what extent NGEN
produces any effects on a-4Slo+ B4 channels, although
the results showing that homomeric a-4Slo channels are
activated by this compound are valuable from mechan-
istic standpoints.

There is evidence to show that NGEN is a target for
Ky channel. In our study, we also found that this com-
pound could be a direct stimulator of BKc, channels.
With the aid of Blastx program (http://blast.ncbi.nlm.
nih.gov/), we further examined the similarity of amino
acid sequence between the a-subunit of BKc, channel
(KCNMAL1) and KCNQ3 protein. Interestingly, a portion
of BKc,-channel a-subunit (AAI4497.1), to which the se-
quence of KCNQ3 (AAI28577.1) shares the similarity
(26%), is located at 182-381. This region are noted to
correspond with the ion transport domain of the BKc,-
channel a-subunit. Therefore, it is tempting to speculate
that NGEN or other structurally similar compounds can
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interact at this region to influence the activity of BKc,
channels or/and Ky/7-encoded channels.

In the modeled hippocampal neurons presented herein,
burst firing of APs in response to brief current injection
was readily generated and an interaction of two slow
variables could be derived. In other words, as shown in
Figure 10, a slow autocatalytic variable (n) correspond to
the activation gate of T-type Ca®* channel, while a slow
negative feedback variable (o) is the activation gate of K¢,
channel. In this system, the results from fast-slow analysis
led us to suggest that the subtle interaction of activation
gates between T-type Ca®* channel and K¢, channel is
able to generate slow oscillations that move the fast sub-
system from a stable non-oscillatory regime into a repeti-
tive spiking regime and back again. Superimposition of
the voltage nullcline (Figure 10) computed with the gates
(o and n) designated as parameters is able to illustrate
where this bifurcation emerges. It is tempting to speculate
that the presence of NGEN potentially alters the firing be-
haviors of central neurons in vivo, assuming that those
neurons functionally express the activity of both Ky; and
BKc, channels.

Conclusions

The stimulatory effect of NGEN on native i) expressed
in central neurons could have an impact on the function-
ing of the neurons. Further work is required to see
whether the activity of Ky; channels stimulated by this
compound is responsible for the antinociceptive or antiox-
idative actions of different compounds known to activate
I v Besides that, NGEN-induced actions on the stimula-
tion of Ky; and BKc, channels may combine to affect the
functional activities if both channels are expressed in cen-
tral neurons in vivo. Our findings raise the possibility that
NGEN-mediated changes in ion currents of neurons de-
scribed above are closely linked to its possible neuropro-
tective actions [41].

Methods

Drugs and solutions

Naringenin (NGEN; 4',5,7-trihydroxyflavanone) was ob-
tained from MP Biomedicals (Solon, OH). Linopirdine,
flupirdine, meclofenamic acid and tetrodotoxin were
obtained from Sigma-Aldrich (St. Louis, MO), apamin,
iberiotoxin and verruculogen were from Alomone Labs
(Jerusalem, Israel), and gabazine and glibenclamide were
from Tocris Cookson (Bristol, UK). Azimilide was a gift
from Procter and Gamble Pharmaceuticals (Cincinnati,
OH). All culture media, fetal bovine serum, L-glutamine,
trypsin/EDTA and penicillin-streptomycin were obtained
from Invitrogen (Carlsbad, CA). All other chemicals were
obtained from regular commercial chemicals and of re-
agent grade.
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The composition of the bath solution (i.e., normal
Tyrode’s solution) was 136.5 mM NaCl, 54 mM KCl,
1.8 mM CaCl,, 0.53 mM MgCl,, 5.5 mM glucose, and
5.5 mM HEPES-NaOH buffer, pH 7.4. To record Ixca)
or Iy, the recording pipettes were backfilled with a so-
lution consisting of 130 mM K-aspartate, 20 mM KCl,
1 mM KH,PO,4 1 mM MgCl,, 3 mM Na,ATP, 0.1 mM
Na,GTP, 0.1 mM EGTA, and 5 mM HEPES-KOH buffer,
pH 7.2. To measure (g, cells were bathed in a high-K,
Ca**-free solution containing 130 mM KCl, 10 mM NaCl,
3 mM MgCl,, 6 mM glucose, and 10 mM HEPES-KOH
buffer, pH 7.4. For single-channel recordings, high K"
bathing solution contained 145 mM KCl, 0.53 mM MgCl,,
and 5 mM HEPES-KOH buffer, pH 7.4, and pipette solu-
tion contained 145 mM KCl, 2 mM MgCl,, and 5 mM
HEPES-KOH buffer, pH 7.2. The value of free Ca®>* con-
centration was calculated based on the method from
http://www.stanford.edu/~cpatton/downloads.htm.

Cell preparations

NSC-34 neuronal cells were originally produced by fu-
sion of motor neuron-enriched, embryonic mouse spinal
cords with mouse neuroblastoma [24,25]. They were rou-
tinely maintained in 1:1 mixture of DMEM and Ham’s
F12 medium supplemented with 10% (v/v) FBS and 1%
penicillin-streptomycin. Cultures were incubated at 37°C
in a humidified environment of 5% CO5/95% air. The
medium was often replenished every 2-3 days for removal
of non-adhering cells. To slow cell proliferation and en-
hance their maturation towards a differentiated state, be-
fore confluence, cells were grown in 1:1 DMEM plus
Ham’s F12 medium supplemented with 1% FBS. To ob-
serve neurite growth in these cells, a Nikon Eclipse Ti-E
inverted microscope (Li Trading Co., Taipei, Taiwan)
equipped with a five-megapixel cooled digital camera
was commonly used. The camera was connected to a
personal computer controlled by NIS-Element BR3.0
software (Nikon; Kanagawa, Japan).

HEK293T cell line was obtained from the American
Type Culture Collection (CRL-11268; Manassas, VA).
Cells were grown in DMEM supplemented with 10%
FBS, 2 mM L-glutamine and 1% penicillin-streptomycin
at 37°C in an atmosphere of 5% CO, and 95% air incuba-
tor. For the transfection of HEK293T cells, cells at a num-
ber of 0.8-2.4 x 10° were seeded on the 35-mm culture
plate for 24 hours.

Transfection

The pCMV6-XL4 vector containing human BKc,-channel
pore forming o-subunit cDNA (a-kSlo; NM_002247.1)
was obtained from Origene Technologies (Rockville, MD).
The a-hSlo gene is recognized to encode a functional
BKc, channel. The expression plasmid was transfected
into HEK293T cells for transient expression [31,42]. In
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brief, the expression plasmid was prepared in 150 mM
NaCl as a diluent solution. PEI (ExGen 500; MBI
Fermentas, Hanover, MD) and plasmid were mixed to-
gether and incubated for 10 min at room temperature
for adequate binding of the plasmid to PEI Plasmid-PEI
mixture solution was subsequently added to the 24-well
plate and centrifuged at 280 ¢ for 5 min. After centrifu-
gation, transfected cells were incubated at 37°C for add-
itional 48 hours. The expression of a-4Slo channels was
determined by either immunofluorescence staining or
electrophysiological measurements.

Electrophysiological measurements

NSC-34 or HEK293T cells used for electrophysiological
experiments were dissociated and an aliquot of cell
suspension was subsequently transferred to a recording
chamber mounted on the stage of an inverted fluores-
cent microscope (CKX-41; Olympus, Tokyo, Japan). The
cells were bathed at room temperature (20-25°C) in nor-
mal Tyrode’s solution containing 1.8 mM CaCl,. Patch pi-
pettes were made from Kimax-51 glass capillaries (Kimble;
Vineland, NJ) using a PP-830 electrode puller (Narishige,
Tokyo, Japan) or a P-97 Flaming/Brown micropipette
puller (Sutter; Novato, CA), and their tips were then fire-
polished with an MF-83 microforge (Narishige). The pi-
pettes used had a resistance of 3-5 MQ when immersed in
different solutions as described above. Patch-clamp re-
cordings were made in cell-attached, inside-out or whole-
cell configuration by means of an RK-400 (Bio-Logic,
Claix, France) or an Axopatch 200B patch-clamp amplifier
(Molecular Devices; Sunnyvale, CA) [25,29].

Action currents that reflect APs were measured from
NSC-34 neuronal cells by means of cell-attached voltage-
clamp recordings as described previously [29,30]. The po-
tential was held at the level of the resting potential
(~-70 mV). Action current measurements were used to
allow quantification of the underlying AP frequency under
the condition where the intracellular contents remain un-
changed. The waveform in action current appearing as a
brief spike in the downward direction was mainly due to
the capacitive current, which was shaped as the first de-
rivative of the AP.

Data analyses

To calculate the percentage increase of NGEN on I,
each cell was depolarized from -20 to -50 mV, the ampli-
tude of Iigy measured at the end of hyperpolarizing
pulse in the presence of 300 uM NGEN was taken to be
100%. The NGEN concentration required to increase
50% of current amplitude was determined using a Hill

function, y = %, where [C] is the NGEN concen-

tration, EC5o and nyy are the concentration required for
a 50% increase and the Hill coefficient, respectively; and
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E . is the NGEN-induced maximal increase in the
amplitude of Ix (i-e., linopirdine-sensitive current).
The relationships between the membrane potentials
and the I conductance obtained before and after the
addition of NGEN (10 pM) were fitted with a Boltzmann

function of the following form: & = ——A——
‘max |:7(v7v1/2)q1~"i|
1+ exp | ———7——

where Gy is the maximal conductance of Ixoy, Vi is
the voltage at which there is half-maximal activation, g
is the apparent gating charge, F is Faraday’s constant, R
is the universal gas constant, and 7T is the absolute
temperature. The solver subroutine built in Microsoft
Excel (Redmond, WA) was commonly used to fit the data
by a least-squares minimization procedure.

Single-channel currents of BKc, or Ky, channels were
analyzed using pCLAMP 9.2 software (Molecular Devices).
Multigaussian adjustments of the amplitude distributions
among channels were used to determine single-channel
currents. The channel open probabilities were generally
evaluated using an iterative process to minimize the x> cal-
culated when an adequate number of independent obser-
vations were made. For dwell time analyses, only one
single channel in the patch was used. The single-channel
conductance was determined by a linear regression using
the mean values of current amplitudes measured at differ-
ent levels of holding potentials.

Data points presented here represent the means + SEM.
Values of n indicate the number of cells from which the
data were obtained. The paired or unpaired Student’s ¢ test
and one-way analysis of variance with a least-significance
difference method for multiple comparisons were used for
the statistical evaluation of difference among means. Stat-
istical analyses were performed using SPSS 14.0 (SPSS
Inc.,, Chicago, IL). Since we intended to make assertions
about the variability of means that could be collected from
a random cohort derived from the population concerned,
we believe that the standard error shown in this study
could be more appropriate than the standard deviation.
The level of statistical significance was set at p < 0.05.

Computer simulations

To evaluate how changes in Iy and/or Ik ca) influence
neuronal firing, a theoretical model with bursting firing
of APs was adapted from the work of Xu and Clancy
[27]. This model is primarily based on the electro-
physiological properties of hippocampal CA3 pyramidal
neurons and it comprises the delayed-rectifier K"
current, the transient K™ current, the fast Na* current,
the T-, L- and N-type Ca®" current, Ca®*-activated K*
current, and after-hyperpolarizing K current. The
Markov model of Na* (i.e., SCN1A) channel was incor-
porated to the modeled neuron [27]. In the present sim-
ulations, the conductance values and reversal potentials
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used to solve the set of differential equations are listed
in Table 1.

The model neuron used in this work generally behaves
according to the modified Hodgkin-Huxley scheme, ex-
cept that the formulations of Na current was based on a
Markov model. The equation for V is given by C m"{’;l—‘t/ =-

(UNa + Icar +Icar + Ican + Ixpr + 14 + Ixca + Lanp+
Iteak) + Iapp, where V denotes the membrane potential;
C,, is the membrane capacitance; Iy, is the fast Na"
current; Ic,p; Icar, and Icey are the T-, L- and N-type
Ca®* currents, respectively; Ixpyg is the delayed-rectifier
K* current; I, is the transient K™ current; Ixc, is the
Ca**-activated K* current; I5yp is the afterhyperpolari-
zation current; [ e, is the leak current; and I,y is the
injected current.

Computer programs shown in this study were either
written in C++ programming language or came with the
XPP simulation package available at http://www.math.
pitt.edu/~bard/xpp/xpp.html [33]. Parts of numerical
simulations were validated in Microsoft Excel. They
were generally run under a Hewlett Packard xw9300
workstation (Palo Alto, CA). The ordinary differential
equations were solved numerically using the explicit Euler
method with a time step of 0.001 msec.
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