BMC Neuroscience

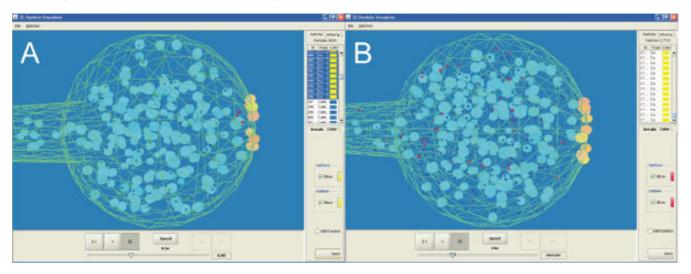
Poster presentation

Open Access

Results from a novel Cellular Dynamics Simulator reveal a quantitative mechanism for Ca²⁺-CaM activation in dendritic spines Yoshihisa Kubota*, Michael J Byrne and M Neal Waxham

Address: Department of Neurobiology and Anatomy, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA Email: Yoshihisa Kubota* - Yoshihisa.Kubota@uth.tmc.edu

* Corresponding author


from Seventeenth Annual Computational Neuroscience Meeting: CNS*2008 Portland, OR, USA. 19–24 July 2008

Published: II July 2008

BMC Neuroscience 2008, **9**(Suppl 1):P107 doi:10.1186/1471-2202-9-S1-P107
This abstract is available from: http://www.biomedcentral.com/1471-2202/9/S1/P107
© 2008 Kubota et al: licensee BioMed Central Ltd.

Particle-based Monte-Carlo simulations are an important tool for the analysis of microscopic molecular physiology. One of the major challenges in the field is how to accurately simulate molecular diffusion, interaction, and multi-protein complex assembly in the cellular environment. Here we present a novel event-driven simulation scheme (Cellular Dynamics Simulator, CDS) that can

address how volume exclusion and molecular crowding impact signaling cascades in small subcellular compartments such as dendritic spines. We contend that the exact molecular collision detection scheme used in this simulator is essential to understand the spatio-temporal pattern of Ca²⁺-CaM activation during synaptic stimulations.

Figure

 Ca^{2+} -CaM Activation domain. (A) A snapshot of a simulation showing that CaM molecules become fully Ca^{2+} saturated only within close proximity of ion channels with low Ca^{2+} injection rates. The probability of CaM entering into a fully Ca^{2+} saturated state depends sharply on the distance of CaM molecules from the source of Ca^{2+} entry. (B) A snapshot of a simulation having a higher Ca^{2+} injection rate. The CaM molecules become fully Ca^{2+} saturated throughout the entire spine. The red spots in the figures indicate fully Ca^{2+} saturated CaM molecules while dark blue are partially Ca^{2+} -saturated CaM. The light brown particles represent Ca^{2+} channels. The small yellow particles are Ca^{2+} ions.

Combining this novel simulator and a detailed kinetic model of Ca²⁺-CaM-CaMKII interactions, we investigate how the rate of Ca²⁺ injection and the spatial localization of Ca2+ channels impact the spatio-temporal patterns of Ca²⁺/CaM and CaMKII activations in a simplified dendritic spine. The activation of CaM requires a rapid and successive binding of Ca²⁺ ions. For this successive binding to happen, the CaM molecule must collide into the second Ca2+ ion before the first one dissociates from it. Thus, at a relatively low Ca^{2+} injection rate (0.01 \sim 0.1 Ca^{2+} ions per microsecond per ion channel), the number and the location of Ca²⁺ channels have a major impact on the spatio-temporal pattern of CaM activation. In fact, at these rates even if ten ion channels are open simultaneously, only a small number of CaM molecules become fully saturated and the Ca²⁺ saturation takes place only in close proximity to the Ca²⁺ channels (Figure 1A). On the other hand, at higher Ca²⁺ injection rates (1 ~10 Ca²⁺ ions per microsecond) with the same number of ion channels present, the Ca2+ saturation of CaM takes place throughout the spine volume (Figure. 1B). Thus, depending on the type and/or number of ion channels, the spine Ca²⁺ signaling system operates in different modes: one produces a highly localized nano-domain of Ca²⁺/CaM activation while the other produces a global and homogenous Ca²⁺/CaM activation.

Publish with **Bio Med Central** and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- \bullet yours you keep the copyright

Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp

