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Introduction
Dendritic spines can change in number and shape in
response to various physiological, behavioral or patholog-
ical states. This activity-dependent structural plasticity
exists over a vast range of time scales, from minutes to
days or weeks [1,2]. Although spines may have a contin-
uum of shapes, evidence suggests that spines may cluster
in defined groups by their shapes [3-6]. Further evidence
suggests that spine morphology correlates with distance
from the cell body [3,4]; proximal to the soma, where the
dendrite has the largest diameter, spines have short necks
and appear stubby, whereas distally, where the dendrite is
thinner, spines have thinner and longer stems. At interme-
diate distances, a variety of spine types are seen including
the intermediate mushroom-shaped spines.

We formulate a stage-structured population model for
activity-dependent spines of three types: stubby (type-I),
mushroom (type-II), and thin (type-III). Each spine type
is characterized electrically by a spine stem resistance and
chemically by a parameter that controls the level of cal-
cium accumulation in the spine head. Transitions
between spine types are driven by intraspine calcium lev-
els that depend on local electrical activity. A continuum
formulation based on the cable equation [7] represents a
dendritic branch and includes the stage transitions
between stubby, mushroom, and thin dendritic spines.
The model allows for a study of the interaction between
the many activity-dependent (active or passive) spines
and for an investigation of the impact of their individual
and collective dynamics on the output properties of the
dendrite.

Simulations are run for both passive and active spines to
investigate how dendritic diameter and synaptic input fre-
quency influence spine morphology along the dendrite.
In the passive case, the model is reduced to a system of
ordinary differential equations because evidence shows
spatially uniform repetitive synaptic input to passive
spines, within an input region, drive spine restructuring
within that region, with little or no effect on dendritic out-
put and structural change outside the input region. This is
in stark contrast to excitable spines where synaptic activity
can drive restructuring and dendritic output far from the
input region. Finally, we discuss how this model can be
extended to study the formation and loss of spines as well
as how to handle different input frequencies.
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